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Abstract

This paper studies linear parametrically varying systems (LPVs)
with brief instabilities. LPVs are ubiquitous because they provide an
elegant, albeit conservative framework for the study of nonlinear sys-
tems. This is done by analyzing a related family of linear time-
invariant systems parameterized by a parameter p that lives in some
compact set. In the conventional set-up of LPV theory, it is usually
required that the system matrices in the family of parameterized linear
systems be stable for all values of p. However, there are interesting prob-
lems for which this requirement does not hold true, that is, the linear
system matrices are unstable for some of values of the parameter p,
instability occurring for brief instants of time only. This paper intro-
duces the concept of LPVs with brief instabilities and derives tools
for stability and performance analysis of these systems, where per-
formance is evaluated in terms of L, induced norms. The main
results show that stability and performance can be assessed by ex-
amining the feasibility of parameterized sets of Linear Matrix Ine-
qualities (LMIs). An application to the problem of designing a
nonlinear vision/inertial navigation filter for an aircraft approaching
an aircraft carrier is included. The results developed provide the
proper framework to deal with out-of-frame events that arise when the
vision system loses its target temporarily. Field tests with a prototype
unmanned air vehicle illustrate the performance of the filter and
illustrate the scope of applications of the new theory developed.

1 Introduction
It is often possible to express the dynamics of a nonlinear system as

x=A(p(x))x, xeR", ¢))
where the function p takes values in some “parameter” set P and

{A(p): pe P} canbe viewed as a family of matrices parameter-

ized by the elements of the set P. This motivates the study of linear
parametrically varying systems (LPVs) that are simply defined as
x=A(p()x, xeR", (#))
where p is an arbitrary signal taking values in the parameter set P.
Since every solution to the nonlinear system (1) is a solution to the
linear time-varying system (2) (for an appropriately defined signal
p(?), LPVs allow one to prove stability-like properties of a nonlinear
system by analyzing a family of time-varying linear systems. The price
paid for this simplification is the conservativeness that arises from
the fact that the set of solutions to (2) is generally much larger than
the set of solutions to (1). This paper attempts to reduce the conserva-
tiveness of this type of design by considering restricted classes of sig-
nals p.
If one assumes that any piecewise-continuous signal p is al-
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required to guarantee boundedness of any solution to (2). However, this
is no longer the case when A(p) is temporarily unstable. This pa-

per shows how, with an appropriate notion of “brief instability”, it
is possible that an LPV remain uniformly exponentially stable even
when some of the matrices A(p) are unstable for brief periods of

time. Necessary conditions for this to occur are cast in terms of a pa-
rameterized family of Linear Matrix Inequalities (LMIs). Further-
more, the paper analyzes the impact of brief instabilities on the per-
formance of an LPV system, as measured in terms of its L
induced norm. In particular, a parameterized set of LMIs is derived
that, when feasible, provides an upper bound on the Z,-induced norm
of an LPV system with brief instabilities.

Often, it is not possible to satisfy the parameterized LMIs for all
values of the parameter p. To deal with this situation, “local” ver-
sions of the results above are provided in which it is assumed that
the state of (1) starts inside an ellipsoid, thus restricting the values
that

p(t)=p(x(1), 120
can take. These results explore directly the fact that the LPV sys-
tem (2) is an abstraction of the more complex nonlinear system (1).

The analysis of LPV systems with brief instabilities is inspired by
previous work of the first author on switched systems [22, 23], as well as
by the work reported in [24, 25]. Switched systems can be viewed as
a form of LPV systems where the signal p(?) in (2) is restricted to be
constant between two consecutive discontinuities. The idea of brief
instabilities was introduced in [24] for switched systems’, where the
authors provide conditions for exponential stability of switched system
with brief instabilities. These results were extended in [25] for L, dis-
turbance attenuation.

The work reported in this paper is also closely related to that de-
scribed in [26], where the authors provide conditions for the stability of
Asynchronous Dynamical Systems (ADSs). The latter that can also
be viewed as a particular form of switched systems for which the
system dynamics change in response to external asynchronous events.
These events may make the system become unstable for certain periods
of time. In [26] the authors provide LMIs that guarantee exponential
convergence of the state of ADS. Feasibility of the LMIs requires
that the periods of instability occur for a small fraction of the time.
Because the authors of [26] only consider asymptotic rates for the
occurrence of the events that trigger changes in the dynamics, their
results are only asymptotic and do not provide uniform bounds on the
state.

In this paper, the results on LPV systems with brief instabili-
ties are shown to provide a new framework for the design of navi-
gation filters that rely on vision and inertial sensors. See [10] for an
introduction to this problem and its application to the design of a naviga-
tion system for an aircraft approaching an aircraft carrier under the
constraint that only passive sensors be used. The basic nonlinear filter
structure adopted is described in [10], where the authors have derived
sufficient conditions for the existence of nonlinear integrated vi-
sion/inertial filters with guaranteed regional stability and perform-

5 Although in [24] the authors consider a slightly more conserva-
tive definition of brief instabilities, their results seem to be easily
extendable to the definition given in Section 2.
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ance. However, they did not address the fact that instabilities do occur
when the vision system that is used to compensate for the drift that is
introduced by inertial sensors cannot be used temporarily because of
out-of-frame events, i.e., periods of time when the vision system is
unable to see the target due to occlusions or the limited field of view.
The results in [10] are extended in this paper to accommodate out-of-
frame events.

The paper is organized as follows. In section 2 the stability and
performance results on the LPV systems with brief instabilities are
introduced. Section 3 applies the theory developed in Section 2 to the
design of an integrated vision/inertial filter. This section also includes
description of the experimental setup used to test the filter perform-
ance. The paper ends with conclusions.

2. LPVs with Brief Instabilities

Consider the homogeneous Linear Parameter Varying (LPV) system

Z=x=A(p)x, y=C(p)x, €)
where p denotes a piecewise-continuous' time-varying parameter
taking values in the set P R* and 4: P—R""and C:
P — R™™ are functions that map the parameter set to the system
dynamics. In what follows P, ,, denoted the subset of P for which
A(p) is a stability matrix, that is, 4A(p) is stable if and only if
peP . We

stable
assume that P is a compact subset of a finite dimensional space and
that A and C are continuous functions. Because of these assumptions, it

is straightforward to show that P,

unstable

. The remaining elements of P form the set P, ...

is also compact. In the sequel
we derive conditions on p that are sufficient to guarantee that x con-
verge to zero exponentially fast. We will also compute an upper
bound on the transient response of the output y.

For a given time-varying parameter p and ¢ >7> 0, let
T, (z,t) denote the amount of time in the interval (7,#) that p re-

mainsin P, .. . Formally,
t
T, (0= 2(p(s)dx, @
where y: P—{0,1} denotes the characteristic functionof P, ,,. »i.¢.,
l(p) — {O pbe Pvtable
1 pe Punstable

The integral in (4) is well defined because the piecewise-

continuity of p and the compactness of P,

unstable guarantee that

x(p) is also piecewise-continuous. We will say that 5, has brief
instabilities if

T,(z,)) STy +a(t-7),Vi2720,
for some T, 20, o e [0.1]. The scalar T, is called the instabil-
ity bound and « the asymptotic instability ratio.

2.1 Stability
We now provide conditions under which system (3) is stable in the

presence of brief instabilities.
Lemma 2.1 Consider the LPV system 2, defined by (3) and as-

sume there exist positive definite matrices R € R™™" and

X € R"™ and positive scalars A, u such that

! We say that a signal v: [0, c0)—> R s piecewise continuous if v
has a finite number of discontinuities on any finite interval.

A(P)' X + XA(p) S =24y X , Vp € P, ®)
A(P)" X + XA(p) < pP , Vp € Py » ©)
and
X>C(p)"RC(p), VpeP. @)
Further assume that 2, has brief instabilities with instability
4o

bound T, and asymptotic instability ratio o < a =

YT
Then, x and y converge to zero exponentially and
Y(©)" Ry(t) < e x(0)" Xx(0) ; Vt>0, along solutions of
(3).

Note. When (5) holds, (6) will always hold for sufficiently large .
Moreover, we can always scale P so that (7) also holds.
Proof: For a particular solution x of (3), let

V(t):=x(t)" Xx(1).
From (5)-(6) it follows that V' < —A,V while pe P,
V< 1V while pe P . Therefore,

unstable
Vt)<e Yy, Vezr20. (8
By assumption, 3, has brief instabilities with instability bound
T, and asymptotic instability ratio o.. Let 4:=A4, —a(4, + u) .
Then,
Ayt —7=T,(7,0) + uT,(z,0) < (A, + )T, = At = 7),(9)
Vit 21720 . Using (8) and (9) yields
V()< et A0y Y>>0,
Furthermore, (7) implies that
()" Ry(t) < x(t)" Xx(t) < e x(0)" Xx(0) (10)
for every t >0, thus completing the proof. m

and

g (t=t=T, (2.0) 4T,

The results above shows that x” Xx and y” Ry decay expo-

nentially along solutions of (3) provided that A >0 .
LPV models such as (3) are often used to model nonlinear sys-
tems where the time-varying parameter p is a function of the state,

e.g.,

p(t) = f(x(@),1),
where £ R" x[0,00) — P. When this happens (5)-(7) often do
not hold globally and a local version of Lemma 2.1 is needed. Take

a positive definite matrix R € R™" and consider the set of states
for which the output y is guaranteed to be in the ellipsoid defined by

y'Ry<1,ie,
Q={zeR": z'C(p)" RC(p)z<1,Vp e P}.

We now consider a version of Lemma 2.1 that is local to the set
Q. To this effect, suppose that there exists a symmetric positive defi-

nite matrix P € R and positive scalars A, , ¢ for which
AP)" X + XA(p) <=2, X , V1:x(6) € Q, p(1) € Py, » (11)
A(p)" X + XA(p) < pX , V1:x(1) € Q, p(1) € Py - (12)
X>C(p)'RC(p), Vt:x(t)eQ. (13)
By requiring that the satisfy
Pt x(0)" Xx(0) <1, it is straightforward to prove by contra-

initialization of  (3)

diction (cf. equation (10)) that x(z) will always remain inside Q along
solutions to (3). The following corollary of Lemma 2.1 is thus proved.
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Corollary 2.2 Assume that (11)-(13) hold. Suppose that 2,, has
brief instabilities with instability bound T, and asymptotic insta-

bility a < @', and assume that x(0)" Xx(0) < e 0 Then, x

converges to zero exponentially fast along solutions of (3), without
leaving Q.

2.2 Performance
Suppose now that an input and an extra output are added to the LPV
system considered in Section 2.1 to obtain the new system
3, =x=A(p)x+B(pu, y=C(p)x, z=D(p)x. (14)
The analysis that follows shows how to compute the L -induced
norm from u to z when p has brief instabilities.
Lemma 2.3 Consider the LPV system 2, defined by (14) and as-

sume there exist positive definite matrices R e R™™" and

X € R"™ and positive scalars A, i, and y such that

I<-A4,X, VpeP .- (15)
S<pX, VD € B iavie 16)
and
X>C(p)'RC(p), VpeP.
where
T
I =A(p)" X + XA(p)+ XB(p)B(p)" X +M .(17)

Suppose 2%, has brief instabilities with instability bound T, and

asymptotic instability ratio o < a" and that u is bounded. Then x
and y remain bounded along solutions of (14), with

V(&) Ry(t) < €% (x(0)" Xx(0) + ﬂ|u(s)||2ds), V0.
Moreover, the Ljyinduced norm from u to z is no larger than

oo
y . |————"— and both x and y converge to zero if u € L,.

Ay — a4y + 1)
Proof: For a particular solution x of (14), let ¥ (¢) = x(¢)" Xx(¢) .
Consider now an interval (f,,t,) on which p € P, . From (15)
it follows that

. 2 2 9
V<=l +ul [ ¥
on this interval and therefore
) @l @y
g

eﬂo(f*fl) %(f 7)

V() < dr, telt,t,].(18)

Similarly, on an interval (¢,,¢;) on which p € P, it fol-

unstable >
lows from (16) that

ey f oy

e—y(t—tz) */l(l 7)

V() < ., telt,t].(19)

Iterating (18) and (19) over consecutive intervals yields

V(2) o e =z’

e/lo(tfrpr(T,t))f;tTp(T,t) ﬂo(t §=Tp (5,0))=pT ) (s,)

V() <

Vt>172>0. Using the above relationship, the two follow-
ing inequalities are also obtained for V¢>72>0:

V() 0

AT Ty 0Ty 2 S o =5=T ()= (5.0)

V() < ds (20)

and

EQ b < v(7)

t
_L yzelo(t—s—Tp (8,0))=uTp (s,1) - eﬂo(t—r—Tp(r,t))—/sz(r,t)

o o

o P Ty (S)=4T (5.)

@

Suppose now that 2, has brief instabilities with instability

bound 7|, and asymptotic instability ratio o, that is, (9) holds with
A=A, —a(l, + u) . From (9) and (20) it can be concluded that

V(t)< (Ao+1)To—A(7— t)V( ) J‘ |u(s) is :

—(/1{)+;1 To+A(t=s)

Ve>7r2>0.

Using (7), this can be shown to imply
¥(0)" Ry(1) < x(1)" Xx(1)
x(O) Xx(O)

*(/10+/1)T0+/1f

oo+ iT j Md

JRIC)

Using (9) in (21) and the fact that (4, + )7, (s,7) 2 0 yields
2
)]

e—(ﬂ{] +1)Ty+A(t—s)

j' =) ds<— V@ +j' ds , (22)

yZe%(f s) efww)ToM(t—r)
7,00)

gives

V() I I ||”(S)

e—(lo-uz)To —(10+;1)T0+l(t )

j [ ”ZA(”? |S) dsdt <
0
Exchanglng the order of integration it is easy to show that
j e ds < —— v (2)+ [“uc)] ds)

thus completlng the proof.
A local version of Lemma 2.3 is derived next. To this effect take a

positive definite matrix R € R™" and consider the set of states for
which the output y is guaranteed to be in the ellipsoid defined by

y'Ry <1, ie,
Q:={zeR": z'C(p)" RC(p)z<1,Vpe P}.
Suppose now that there exists a symmetric positive definite
matrix P € R"™™ and positive scalars A, , and y such that
I<-A, X, VEx(@)eQ, p(t)e P (23)
S<pX , Vi:x(t)eQ, p(1) € P e » (24)
X>C(p)"RC(p), Vt:x(t)eQ, 25)
where 3 is defined as (17). The following corollary of Lemma 2.3
is then straightforward to derive.
Corollary 2.4 Assume that (23)-(25) hold. Suppose that 2, has

brief instabilities with instability bound T, and asymptotic insta-

bility ratio «a< a*, that u is bounded, and that
1 2 _ .
x(0)" Xx(0) + L||u(s)|| ds < e %% Then, x converges to zero

along solutions of (3) without leaving the set £2 Furthermore, the

ool 5
Lj-induced norm from u to z is no larger than y TO .
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3 Application: Design of integrated vision/inertial filters

In this section we apply the ideas formulated above to the design
of integrated vision/inertial filters. A basic filtering structure has
been introduced in [10], where the authors obtained sufficient con-
ditions for the existence of nonlinear integrated vision/inertial
filters with guaranteed regional stability and performance. These
results are extended in this paper to include so-called out-of-frame
events.

3.1 Problem formulation

This section introduces the navigation problem that is the main focus
of the paper and describes its mathematical formulation in terms of an
equivalent filter design problem. For the sake of clarity, we first intro-
duce some required notation and review the kinematic relationships of
an aircraft / ship carrier ensemble, where the former is equipped with a
vision based system.

Consider Figure 1, which depicts an aircraft equipped with a vi-
sion camera operating in the vicinity of a ship. Let {7} denote an iner-
tial reference {B} a body-fixed frame that moves with the aircraft,
and {C} a camera-fixed frame. The symbol {S} denotes a ship-fixed
body frame. The following symbols will be used (see Figure 1):

e py=[x; ;251" - position of the origin of {B} measured in
{1} (i.e., inertial position of the aircraft);

o ps=[x5ys ZS]T - inertial position of the ship;

e Py (abbv. p=[xyz]") - relative position of the ship with
respect to the aircraft, resolved in {1};

o “pg (abbv. p. =[x, y,z.]") - relative position of the ship
with respect to the aircraft, resolved in {C};

. v, - linear velocity of the origin of {B} measured in {1} (i.e.,
inertial velocity of the aircraft);

e v -inertial velocity of the ship;

. 5a - linear acceleration of {B} with respect to {1}, resolved in

{B};
e ® - angular velocity of {C} with respect to {1}, resolved in {I}

(0=[0,0,0.])

e A=[pOy]" - vector of roll, pitch, and yaw angles that pa-
rameterize locally the orientation of frame {C;} with respect to
{1}

Given two frames {4} and {B}, ;R denotes the rotation matrix
from {B} to {4}. In particular, CI R (abbreviated R) is the rotation
matrix from {C} to {I}, parameterized locally by A, that is,
R=R(A).

3.2 Kinematic relations
The rotation matrix R satisfies the orthonormality condition
R"R =1. Furthermore, [12]:

R=RS(w), (26)
where
0 -0 o,
S(o)=| o, 0 -o|, 27
-0, o, 0

is a skew symmetric matrix, that is, S T = _S . The matrix S satisfies
the relationship S(a)b =axb, where a, b are arbitrary vectors and

x_denotes the cross product operation. Furthermore, "S (m)" = "(o" .

B v,

!x?{(.‘}
/ p=cRpc
7
r'fll
/[ Ps
f.f "S
/ /..L—'

Figure 1: Coordinate systems
We introduce the following assumption:
Al - the ship 's inertial velocity Vg is constant and different fiom

zero.
From the above definitions, it follows that
2 2 2

I d” (;
Ps =Pz—cRp. = ?(CRPC):EPS _EPB , (28)

2
and since ?p s =0 (assumption A1) we obtain

d’(, d’
?(CRPC)z_?pB' (29)

Equation (29) shows that aside from a change in sign, the relative
acceleration of the ship with respect to the aircraft resolved in {1} is
equal to the aircraft's inertial acceleration resolved in {7!. However, in
the case of strapdown inertial navigation systems widely in use today
[13] the aircraft's inertial acceleration is given in {B}. Therefore, since
d’ IpB
FPB:BR a
it follows that

d2
?(CIRpC)z—éRBa : (30)

The nonlinear filters developed in this paper provide estimates of
the relative position and velocity of an aircraft with respect to a point
on the ship. This information, together with the aircraft's inertial veloc-
ity, is sufficient to estimate the ship's inertial velocity and, therefore,
its heading. As argued in [14], in the unstructured environment of sea
operations the best way to find a ship is by using an IR (infrared) cam-
era. As shown in Figure 2, simple thresholding of an IR image will
easily provide information on the coordinates of the centroid of the
ship's hottest region (usually its smokestack or boiler room). There-
fore, it is only natural that the origin of the ship's coordinate system
{S} be attached to that point. It is with respect to this same point that
the proposed nonlinear filters obtain relative position and velocity. In
the immediate vicinity of the ship, where the relative orientation be-
comes critical, standard structure from motion solutions can be used
[15].

We assume that the image of the origin of {S} acquired by a cam-
era installed on-board the aircraft is obtained using a simple pinhole
camera model of the form [16] (see Figure 3)

[”:| = ﬂ-f(xc’stZc) :i|:YC} .
% xc| 2Z¢

where f'is the focal length of the camera and [u v]T are the image
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coordinates of p.. =[x, . z.]" in the camera's image plane. The

natural choice for [u V]T is the centroid of the image points associ-

ated with the ship’s smokestack. These points can be easily obtained
by thresholding from the IR image of a ship, as can be seen in Figure
2.
We also make the following assumptions:
A2 - x. >0, that is, the ship is always located in front of the cam-
era's image plane;
A3 - the rotation matrices and CI R are available from the on-

board attitude measurement system.
This assumption is quite reasonable, considering the sophistication
achieved by such systems today.

Figure 2: IR image of a ship

-

Y

1.
3]

E‘—'

i:s“

v
Figure 3: Geometry of the vision/altimeter process model for ¢ = 0

Suppose the aircraft is equipped with a barometric-based sensor
that provides a measurement of the altitude of the aircraft with respect
to the mean sea level. Assuming the aircraft is sufficiently away from

the ship (so as to neglect the height /g of the ship's deck above the
mean sea surface), we may assume that
Ad- hy =

Then, using the relation Rp. the altitude measurement

z :gw(pc):—sinﬁxc —cos@singy. + cosfcosgz. .

where ¢ and  are the roll and pitch angles in the rotation matrix

CIR (see Figure 3).
We now introduce the underlying design model that plays a

fundamental role in this paper. Let y = [u v z]" . Then, the model
that we consider can be written as

p=v,
G=:v=—R(®a, +w,), 31
ym = g(PC)J'_wy’

where g(p.): R* — R’ isdefined by

l: :g(pc){ﬁf(z%))} (32)

and a, and y, denote the measured values of a and y, respec-
tively, the measurements being corrupted by the process noises W,
and W . In what follows, the deterministic set-up of H, filtering [17]
will be adopted.

3.3 Problem definition
The problem that we consider in this paper consists of deter-
mining the relative position and relative velocity of an aircraft
with respect to a landing site using vision and other on-board
passive sensors. For the sake of clarity, we first tackle the sim-
plified problem of designing a filter with no measurement noise
in the model. This exercise is simple, yet it captures some of
the key ideas used in the development that follows.

The additional notation that is required is introduced next.

We let p and Vv denote estimates of p and v, respectively. In

the camera frame, they are denoted by P., V.. We assume

that the orientation of the camera frame {C} with respect to {1}
is restricted through the set

AS- AC = {A |¢| < max > H| < gmax’ l//| < l//max} .
Notice, for example, that . should be set to n. We further

assume that the vectors P lie in the compact set

- PC :{pC *Xmin S‘X;C Sxmax’ymin SyC Symax’

Zoin SZo Sz

A6

max }

where x z . are determined from the geometry of the

min °° 2 “max

problem at hand. The set Pc can be determined as follows. First,
compute P. for a nominal orientation of the camera (usually
inertial orientation). Determine the maximum range of camera
orientation angles with respect to the nominal orientation. Then
compute P by allowing the angles to vary within these prede-
termined bounds.

In a realistic scenario the image of the ship smokestack will
be lost by the onboard camera due, for example, to aircraft rota-
tional motions. This phenomenon is known as an out-of-frame
event. Formally, we define a binary signal s: [0,00) — {0,1}:

A 0 -out-of - frameevent at time?,
s = {1 - camera tracks the smokestack at time 7.

Furthermore, for a given binary signal s and >7> 0, let us
denote by 7,(7,t) the amount of time in the interval (z,¢) that

s=0. Formally, 7, (z,1):= [ "1 s()dl .

The following assumption plays a crucial role in the
development that follows.
A7 - s has brief

T(r,t)<Ty+a(t-1),
a €[0,1].

Navigation filter design will aim at ensuring that the esti-

event, ie.,
T,>0,

out-of-frame
Vt>27t2>20, for some

mates p. of p. lie in a compact set
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Po={pc =[%c e 21 :|£C _xc| S Xinax ~ Ximin + X,

|j>C _yC| < Ymax = Vmin +dy5|2C _ZC| < Zmax ~ Zmin +dZ}'
where dx, dy and dz are positive numbers, and dx < x_;, .
F1: Regional Stability. Consider the process model (31) and

assume that W, =w, =0. For a given P., find a number

o, >0, and a dynamical system (filter) F that operates on 'y,

and a,, to produce estimates P of p, and V of v in the presence

of out-of-frame events, such that:

. f)c(t)elscforanyt>0,

e pop| v 0 as e,
provided that

(Bc(0)=pc(0).3(0)~ v(O))

Notice that the problem described aims at finding a filter that
complements the information available from the vision system /
barometric pressure sensor with that available from the inertial
Sensors.

The problem F1 focuses on the stability of the filter. The sec-
ond filtering problem addresses the scenario where the perform-
ance of the filter in the presence of disturbances is considered.

F2: Regional Stability and Performance. Consider the process

<a,. (33)

model (31) where' w=[w, Wy]T elL,, "W"2 <@ and let the
sets P, and 16( of allowable position vectors and allowable
estimation vectors be defined as above. For given numbers y >0
and a, >0, find a stable filter F that operates on 'y, and a,, to
obtain estimates P of p, V of v in the presence of out-of-frame
events, such that if (33) holds, the filter satisfies the following
conditions for all w € L, that "W"2 <o :

o f)c(t)elgc forall t>0,

. ||f)—p||+||0—v||—>0 as t — 0?2,

T

ew

2 <V where €:=p—P is the estimation error and

T, w—e.
Notice the technical requirement that an allowable set of position
estimates f’c be specified. As is shown later, this requirement is
essential to establishing the boundedness of a certain operator for
all possible values of the estimates P . In practice, the “size” of the

allowable region P plays the role of a design parameter.

3.4 Proposed solution
This section describes the solutions to problems F1 and F2. First,
however, we need the following basic results. Let H denote the

Jacobian of g(pc) with respect to p.. From the definition of

g (pc ) , it follows that

' Given a signal z we denote by ”z"2 the L,-norm of z, i.e.,

[, =y Izl e

> Aslongas w € L, we always get convergence to zero.

= frexe Jxc! 0
Hpe)=|~ feexd 0 i (34,
—sind —cosfsing cosfdcosg

It is easy to check that det(H) = f>x_ z. . Therefore, H is not
invertible if and only if z=0. This implies that H(p,.) is in-

vertible for all admissible values of p., ¢, and 6.

The next result is adopted from [5] and plays a key role in the
development that follows. In particular, identity (35) makes it
possible to show that the proposed nonlinear filter error dynamics
represent an LPV system. This leads to the utilization of the LPV
framework to reduce the estimation problem to that of determining
the feasibility of a set of LMI's (see proofs of Theorems 3.3 and
3.4).

Lemma 3.1 Let g(pc) be given by equation (32). Then
gBc)-gpc)=LBepIHBIB:~P). 69

where H is given in equation (34), P =[X. P 2.)" and

Xexg! 0 0
LPc.Pc) = 0 )ecx; 0].
0 0 1

Lemma 3.2 Let ¢ :R° >R, and @, :R> —> R be the
operators defined by @(Pc.pc) = HT(f)C)L(f)C’pC)H(f)C)
and §Dl(f’c):HT(f)c)H(f)c)~ Then — @(Pcspe) >0,
@ (Pc) >0, VP, € P and P EIA)c-

Proof: The proof follows directly from assumptions A1-A3 and

the definitions of Hand L. m
The following result provides a solution to problem F1.

Theorem 3.3 Let P. be given and assume that AI-A7 hold and

Xax — Xmin + X
r,=——T0 ——<1. Suppose there exists a matrix
b

min

X=X"eR®® and positive constants a, oy, Ay, 1, Ty, such that

a<a and
X>0, (36)
F'X +XF-2(1-r,)’eCTC<-2,X, (37)
F'X +XF < uX , (38)
X-52Cc'c=o, (39)
ate I X >0, (40)

0 7
where F :=|: :| C= [I 0], and
0 0

5 = min{xmax - xmin + dx’ymax - ymin + dy’zmax
&= min A, (H' (0)HBC). @)
ceby
Define a filter (see Figure 4)

D=+ 5K, (RH (B )(g(Be) - ¥,).
V=—jR%a, +sK, RH" (P )gMBc)-Y,), (“42)
f)C:?Rf)s

-z Tz},

F =

where
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© 0 -out-of -frameevent at time ¢,
s(t) =

- camera tracks the smokestack at time 7,
and

Lﬁj =-X"(1-r)C". (43)

Then the filter F'; solves the filtering problem F1, provided that (33) holds.

INS acceleration
estimate of estimate of estimate of
relative velocity] relative position| relative p(mtlon
m 1 resolved in I in C

Occlusions and
out-of-frame events
K| K,
Filter (_valmi

estimates of image coordinate
and of altitude

Figure 4: Filtering structure: filters F; and F,

Occlusions and
out-of-frame events

Jacobian of hz/

2

image coordinates
and altitude

Proof: Define the error state €, :=p—p and e, =V—v. Let

T
e= [elT eg ] . Then, using Lemma 3.1 and simple algebra it can be
shown that the error dynamics can be written as

ﬂe} (F+sK/R¢p(Pc.pc)cR" C){ } (44)

where K = [KIT Klr]l. Notice that the error dynamics given by
(44) represent an LPV system that depends on (p.,e,,s) . Now,

to show that p( , it is sufficient to show that ||e1|| <o, or

equivalently that [elT eg]T remains in Q= {e| "Ce” <0} . From
Corollary 2.2 and A7, we conclude that this is true provided that
there exists a matrix X >0 and constants A, x4 such that (38)
and (39) hold,

(F+K Rp(Pc,pc)¢R"C) X + (45)
X(F+K Rp(Pc )R C)g_/ioX

for all times for which [elT eg]r €Q,and s=1,and
& —(Ao+

[e@)7 e@? [x[e@T eI ] <e o e

Inequality (46) follows from "[e(O)lT e(O)g ]| <, and (40). In

the following, we focus on the solvability of (45). Prom (43), we
conclude that (45) is equivalent to

s XF+[— 201-r) RH" (p)LH () R” 0}
0 0] 47
“AX.
Inthe set QO , "e1 " <0,s0
(%o = xe )x 0 0
L=1+ 0 (e —xc i 0>1-r,. @)
0 0 1

Therefore,
—2(1-r)¢RH"(p)LH(P )/ R"

I T A IpT -(49)
CRHT(D)HB )R <-20-r,) el

<=2(1-r)°
) r I 0
Because of this and the fact that C" C = 0 ol we conclude

that (37) implies (47) in the set Q. Now, from Corollary 2.2 it
follows that [e(r),|<S, Vi=0 and e (t).e,(1) >0 as
t—>o0.m

The solvability of the inequality (37) is addressed in [10].
There, it is shown that the inequality has a solution if and only if

r, <1. The next theorem provides a solution to the filtering
problem F2.
Theorem 3.4 Let IA’C be given and assume that AI-A7 hold and

— xmax _xmin + dx

7

x

<1. For a given gain y > 0 , suppose there
X

min
. . T 6x6 L.
existsamatrix X = X € R . andposmve constants a, o, /10, M

Ty, such that o < a and
X>0, (50

(ﬂow)To

F'X+XF+XF'FX +$——C"C < ux ,(52)

0o I
where F = , C
00

5 mln {X max min + dx > max
Define a filter (see Figure 4)

Ay
X-87C"C=20, (53)
o’ (e‘“ﬂ””T0 - 52)1 -X>0, (54)

=[1 0] &= min 4, (0,()). and
Pcelfc

_ymin +dy’zmax _Zmin +dZ}'

p=V+5K (RH' (D)D) -Y,),
Fy=1V=— R"a, +sK, RH" (B )&Bc)-Y,). (55
P =/ RD,
where
{Kl} =-X"(1-r)C". (56)
K, *

Then the filter I, solves the filtering problem F2 if (33) holds.
Proof: Define the error state €, :=p—p and €, =V—V.
Then, the error dynamics admit the state-space realization

d|e J
|:e :| (F+5K:Ro(Pc,Pe) ¢ ‘R C)|: }

dt
+ 0 1 T
| =K RHT () |w
2 R

where W = [WaT wf]l and K = [KIT KIT]T We now show that

(57

if the inequalities (50)-(54) are satisfied, then P, € f’c for all
wel,, "W"2 < ® , when (33) holds.
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To prove thatf) c € PC , it is sufficient to show that "e1 " <5,

or equivalently that e] eg]T remains in Q= {e| ||Ce||£5},

. / A
From Corollary 2.4 (with p:=y W ) and A7, we con-

clude that this is true provided that there exists a matrix X >0

and constants Ay, £ such that (52) and (53) hold,
(F+K ‘Rp(Pc.pc) RO X + 58)
X(F+K /'Rp(P.p.) RTC)< -2, X

for all times for which [elT eg]r €Q,and s=1,and

[e(0)7 e [x[e()] @) + [ wis)ds <&@ (s9)
In (52) and to use (58) we used the fact that

0 000 ;R|_[0 0] 7.
JR 0J0 o [0 1|
Inequality (59) follows from "[e(O)lT e(0)§]|ﬁa0, "w"2 <o,

and (54). In the following, we focus on the solvability of (58). Because

F'X+XF + XF'FX

e(loﬂl)To

—f57—11+0—VQ25R%5RT—2U—FJ5R¢éRT 0

0 0
<A X
Because of the first inequality in (49), this inequality holds
F"X + XF + XF'FX
(Ao+)To
€ Ay 21 I pT
4 /1—}/21—(1—13) cRo, ;RO <X

0 0

and then, using the second inequality in (49), we further conclude

I 0
Here we used the fact that C'C = {0 0} . From Schur comple-

ments [7] and the definition (41), (60) holds because of (51). The theo-
rem then follows from Corollary 2.4. m

The next theorem derives necessary and sufficient conditions un-
der which (51) is satisfied.
Theorem 3.5 Let F, y and € and be defined in Theorem 3.4. Then

IX = X" >0 such that

(Ao+1)Ty
FIX+XF+a,X+ 201 _(-r)elc’c XxF'
ﬂ},z ; <0
FX -1
(Zo+1)To
e A
4

Proof: Follows by rescaling yin the proof of Theorem 4.5 in [10].
Remark 3.1 Theorem 3.5 shows that the LMI (51) is feasible if and

only if

(Zo+m)To (Zo+m)Ty
¢ 2/101—(1—};)25SO<:>)/22M.
Ay ’ Al=r)¢
Recall that
Therefore, we obtain
(ﬂoﬂl)Toﬂ
2Ze—ozmax{JHT H IH} 61
V4 ﬂ(l—rx)z oax ( (Pe) T(pc)) (61)

This inequality imposes a lower bound on the achievable values of
y . Furthermore, since A == 4, —a(4, + 1), it follows that
oty /10 B 1

lim > = -
Ty—0,a—0 ﬂ(l _ rv) (1 _ rx)
The above expression shows that the lower bound on the achiev-
able y in the absence of out of frame events converges to the lower

bound derived in [10].

The bound derived in (61) is similar to the classical Positional Dilu-
tion of Precision (PDOP) metric that is commonly used in navigation
systems to determine a lower bound on the achievable error covari-
ance as a function of geometry of the underlying navigation problem
[20, 21, 13]. Using our notation, the classical PDOP can be written as

PDOP = \Jtr(H" (0. )H(p)) "
We therefore see that the new bound derived in this paper cap-

tures a worst case performance scenario and the estimate of x¢ in-
creases the lower bound on the achievable y, since

1>(1—rx)2 >0.

Remark 3.2 The filters used in this paper borrowed from the struc-
ture of the nonlinear observer proposed in [5]. Both filters are de-
signed for a process model that exhibits linear dynamics and nonlinear
measurement equations. In view of this fact, one is naturally driven
to ask the following question: why not simply solve the measure-

ment equation to obtain estimate of p.. that can in turn drive a linear

filter with a much simpler structure? This technique was, in fact, ap-
plied in an earlier version of the work reported in [5]. However, as
pointed out by the authors the latency inherent to this approach led
to unacceptable results. This stemmed from the fact that the estimate

of p. obtained by the nonlinear solver from the measurement equa-

tion and used by the linear filter represented a “delayed version” of
the true position.

Furthermore, the algorithm used by the nonlinear solver re-
quires inverting the Jacobian. In a noisy environment this may lead
to excessive noise amplification. This problem is entirely avoided by
the filters proposed in this paper as well as by the nonlinear observer
in [5]. Finally, the gains used by every filter in this paper are of the
form similar to the gains of optimal filters obtained for the linear time
invariant (LTI) case. This is important, since in the LTI case even if
the output matrix is invertible the optimal gain does not require in-
version of this matrix.

3.5 Numerical implementation and performance studies
In the absence of out-of-frame events (a =0, 7; =0) the matrix

inequalities developed in Theorem 3.4 can be reduced to the following
form:
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X>0,

FTX+XF+(i2—(1—rX)Zg)cTC XF"
r <0,
FX -1

1 _
—z(l—a)z)—X >0,
Qg

X-67C'C>0,
where ¢ is inversely proportional to the size of P , y deter-

mines the filter’s performance and ¢ - the bound on the initial
error in position and velocity estimates. Clearly from the design
standpoint, one would like to minimize &, ¥ and maximize &, .

Let w, =y°, w, =a,”, W, =¢. Define the cost func-
tional J =c,w, +¢c, w, +c; w,, where c;, ¢, c; are positive

weights to be selected by the designer. Now the design problem
discussed above can be reduced to the following convex opti-
mization problem:

find min J subject to

X >0,

F'X+XF-(1-r,fw,C"C C" XFT
c -w, 0 |<0,

XF 0o -1

w,(1-@°)-X >0,

X-57C"C>0.
This optimization problem was solved numerically using MAT-
LAB's LMI toolbox [9]. The resulting values of X, ¢, and y where
then used to study the impact of the out-of-frame events on the

filter performance. For example, in the absence of out-of-frame
events the value of the performance bound y achieved by the filter

was 35. However, in the presence of out-of-frame events, as dis-
cussed above, the value of y increases as a function of 7, as illus-
trated in Figure 5. (Recall that we assumed that on any finite interval z-
7, t>7 the duration of an out-of-frame event is bounded above by
T, +a(t-
were on the order of 10°-10 their impact on the levels of achievable
y was negligible. Furthermore, as the graph in Figure 5 suggests T,

7), a €[0,1].) Since the numerical values of « obtained

exhibits logarithmic dependence on y . This implies that for values of
T, > 2.5 sec, small increases in 7}, result in large increases in achiev-

able y , ie. the filter performance deteriorates rapidly once 7;, passes
this threshold.

Another interesting trade-off is shown in Figure 6, where
for two value pairs of (T,7) =(0.52,55), (7,,7) =(2.5,250)

the graphs of @ v.s. &, are plotted. Recall, in this paper
defines the bound on the norm of the initial estimation error
(33), while @ defines the bound on the norm of the sensor
noise. Figure 6 shows the trade-off between the size of the
initial estimation error tolerated by the filter and the bound on
the sensor noise. Clearly, as 7 increases the achievable val-

ues of @ and « decrease.

a0

0,0
o a0 100 160 200 260 300

500 ‘
450 - mm e T e ]
400 F--mmmmmm e T I R EEEEEEr EEEEEREREPE
350 4o e TN R —

300 oo

g280 -~ — 052,55 | NG
200 Lo — =250, =220 f- - A ]

150 4

100

Figure 6: Achievable oy versus @

3.6 Experimental setup and flight-test results
This section describes the experimental setup and the flight

test experiments that were performed to test the performance
of the nonlinear filter obtained in the previous section. The
Frog UAV operated by the controls lab at NPS was equipped
with an Infrared video camera. The camera included a Boeing
U3000A uncooled 8-12 microns (micrometers). The pixel reso-
lution of the camera was 320x240. The UAV was also
equipped with a Trimble AgGPS 132 Differential Global Posi-
tioning System (DGPS). An illustration of the flight test setup
is provided in Figure 7.

u System Architecture

|.fd.ud.\n| | MU |c|“°"—'“"] ™
{ b pecaver ||| comem

[ R
Hudem Trasmiber
|<eoener

#Futaba RC Contral System

data sensors
Transemitter

VAV Frog
Cortral IMIIDl"“f
Commards Dol '_.L:h
Res tims User
gevosen | 10 | SCS N TE |
Takeoffwaight 50/ | Wirgsgan 1068 PV Foiver fsine A
Payload 50 | Ref, wing area 1761 it Lo ]
5 a0 2 41
paad “ | Prele MACANIS || & rnund Station Hot P (AC104) Windows NT PC
Caling SOOR  |Mi ilsagrafic T

*25mm Nl Germaniurm lens
50 deqree field of view
320 u 240 pinels

igure 7: Flight test setup
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Flight tests were conducted at Camp Roberts air field oper-
ated by NFS. Charcoal grills were used to model the hot spots
on the ship (see Figure 8). Samples of UAV trajectories re-
corded by onboard DGPS are shown in Figure 9. Similarly,
samples of IR images collected by the onboard IR camera are

0 400 0 0 ana
)

Figure 8: Flight test setup: charcoal Figure 9: 2D rep;resentation of
grills DGPS-recorded trajectories

The image processing problem, i.e. that of finding the hot
spots in the image on the runway, turned out to be nontrivial
due to the presence of multiple hot spots in the surrounding
area. This is In contrast to finding hot spots on a ship, where
they are clearly much hotter than the ocean (see Figure 11).

o -

Figure 11: Comparisons of IR images: a) of a ship and b) of the hot spots

As a result an image-processing algorithm was developed
to find and track the hot spots observed by the IR camera on-
board the UAV Frog. The algorithm consisted of two steps.
The first step included finding the hot spots in the initial image
and involved a search over the complete image plane (see Fig-
ure 12). Once the hot spots were found in the initial image, they
were tracked for the remainder of the approach (see Figure 12).
The critical element of this second step was reliance on the inertial
data to predict the approximate location of the hot spots in the next
image and to recover from the out-of-frame events.

The image plane coordinates and GPS altitude were used by
the integrated IR/Inertial filter to compute relative position and
velocity with respect to the nearest hot spot. Figure 13 shows the
results of applying the integrated IR/Inertial filter to the flight test
data. In particular, the upper graph shows the DGPS landing ap-
proach trajectory. The bottom left graph shows the estimation er-
rors computed by comparing the DGPS position with the position
estimates produced by the filter. Finally, the bottom right graph
shows the response of the filter to an out of frame event. Clearly,
the filter performed well.

4 Conclusions
This paper introduced the concept of LPV systems with brief in-
stabilities and derived new results for stability and performance

analysis of such systems, where performance is evaluated in terms
of L, induced norms. The main results show that stability and per-
formance can be assessed by examining the feasibility of param-
eterized sets of LMIs. These results were applied to the design of
an integrated vision/inertial navigation filter with guaranteed stabil-
ity and performance id the presence of out-of-frame events. Numeri-
cal trade-off studies were conducted to determine filter's achievable
performance versus the duration of the out-of-frame events. Finally,
the filter was tested using flight test data collected by a UAV
equipped with inertial sensors and IR camera. The results of the
test showed the filter to perform well in the presence of out-of-
frame events.

Figure 12: Main ideas of ;h; first step for IR image processing

Figure 13: Filter’s performance during final approach
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