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This paper studies linear parametrically varying systems (LPVs) 
with brief instabilities. LPVs are ubiquitous because they provide an 
elegant, albeit conservative framework for the study of nonlinear sys-
tems. This is done by analyzing a related family of linear time-
invariant systems parameterized by a parameter p that lives in some 
compact set. In the conventional set-up of LPV theory, it is usually 
required that the system matrices in the family of parameterized linear 
systems be stable for all values of p. However, there are interesting prob-
lems for which this requirement does not hold true, that is, the linear 
system matrices are unstable for some of values of the parameter p, 
instability occurring for brief instants of time only. This paper intro-
duces the concept of LPVs with brief instabilities and derives tools 
for stability and performance analysis of these systems, where per-
formance is evaluated in terms of L2 induced norms. The main 
results show that stability and performance can be assessed by ex-
amining the feasibility of parameterized sets of Linear Matrix Ine-
qualities (LMIs). An application to the problem of designing a 
nonlinear vision/inertial navigation filter for an aircraft approaching 
an aircraft carrier is included. The results developed provide the 
proper framework to deal with out-of-frame events that arise when the 
vision system loses its target temporarily. Field tests with a prototype 
unmanned air vehicle illustrate the performance of the filter and 
illustrate the scope of applications of the new theory developed. 

1 Introduction 
It is often possible to express the dynamics of a nonlinear system as 

xxAx ))((ρ= , ,      (1) nx ℜ∈
where the function ρ  takes values in some “parameter” set P and 

{ )(ρA : P∈ρ }  can be viewed as a family of matrices parameter-
ized by the elements of the set P. This motivates the study of linear 
parametrically varying systems (LPVs) that are simply defined as 

xtpAx ))((= , ,      (2) nx ℜ∈
where p is an arbitrary signal taking values in the parameter set P. 
Since every solution to the nonlinear system (1) is a solution to the 
linear time-varying system (2) (for an appropriately defined signal 
p(t)), LPVs allow one to prove stability-like properties of a nonlinear 
system by analyzing a family of time-varying linear systems. The price 
paid for this simplification is the conservativeness that arises from 
the fact that the set of solutions to (2) is generally much larger than 
the set of solutions to (1). This paper attempts to reduce the conserva-
tiveness of this type of design by considering restricted classes of sig-
nals p. 

If one assumes that any piecewise-continuous signal p is al-
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lowed in (2), then stability of all the matrices , )( pA Pp ∈  is 
required to guarantee boundedness of any solution to (2). However, this 
is no longer the case when  is temporarily unstable. This pa-)( pA
per shows how, with an appropriate notion of  “brief instability”, it 
is possible that an LPV remain uniformly exponentially stable even 
when some of the matrices  are unstable for brief periods of )( pA
time. Necessary conditions for this to occur are cast in terms of a pa-
rameterized family of Linear Matrix Inequalities (LMIs). Further-
more, the paper analyzes the impact of brief instabilities on the per-
formance of an LPV system, as measured in terms of its L2-
induced norm. In particular, a parameterized set of LMIs is derived 
that, when feasible, provides an upper bound on the L2-induced norm 
of an LPV system with brief instabilities. 

Often, it is not possible to satisfy the parameterized LMIs for all 
values of the parameter p. To deal with this situation, “local” ver-
sions of the results above are provided in which it is assumed that 
the state of (1) starts inside an ellipsoid, thus restricting the values 
that 

))(()( txtp ρ= ,  0≥t
can take. These results explore directly the fact that the LPV sys-
tem (2) is an abstraction of the more complex nonlinear system (1). 

The analysis of LPV systems with brief instabilities is inspired by 
previous work of the first author on switched systems [22, 23], as well as 
by the work reported  in [24, 25]. Switched systems can be viewed as 
a form of LPV systems where the signal p(t) in (2) is restricted to be 
constant between two consecutive discontinuities. The idea of brief 
instabilities was introduced in [24] for switched systems5, where the 
authors provide conditions for exponential stability of switched system 
with brief instabilities. These results were extended in [25] for L2 dis-
turbance attenuation. 

The work reported in this paper is also closely related to that de-
scribed in [26], where the authors provide conditions for the stability of 
Asynchronous Dynamical Systems (ADSs). The latter  that can also 
be viewed as a particular form of switched systems for which the 
system dynamics change in response to external asynchronous events. 
These events may make the system become unstable for certain periods 
of time. In [26] the authors provide LMIs that guarantee exponential 
convergence of the state of ADS. Feasibility of the LMIs requires 
that the periods of instability occur for a small fraction of the time. 
Because the authors of [26] only consider asymptotic rates for the 
occurrence of the events that trigger changes in the dynamics, their 
results are only asymptotic and do not provide uniform bounds on the 
state. 

In this paper, the results on LPV systems with brief instabili-
ties are shown to provide a new framework for the design of navi-
gation filters that rely on vision and inertial sensors. See [10] for an 
introduction to this problem and its application to the design of a naviga-
tion system for an aircraft approaching an aircraft carrier under the 
constraint that only passive sensors be used. The basic nonlinear filter 
structure adopted is described in [10], where the authors have derived 
sufficient conditions for the existence of nonlinear integrated vi-
sion/inertial filters with guaranteed regional stability and perform-
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ance. However, they did not address the fact that instabilities do occur 
when the vision system that is used to compensate for the drift that is 
introduced by inertial sensors cannot be used temporarily because of 
out-of-frame events, i.e., periods of time when the vision system is 
unable to see the target due to occlusions or the limited field of view. 
The results in [10] are extended in this paper to accommodate out-of-
frame events. 

The paper is organized as follows. In section 2 the stability and 
performance results on the LPV systems with brief instabilities are 
introduced. Section 3 applies the theory developed in Section 2 to the 
design of an integrated vision/inertial filter. This section also includes 
description of the experimental setup used to test the filter perform-
ance. The paper ends with conclusions. 

2. LPVs with Brief Instabilities 
Consider the homogeneous Linear Parameter Varying (LPV) system 

Σp:= , ,      (3) xpAx )(= xpCy )(=
where p denotes a piecewise-continuous1 time-varying parameter 
taking values in the set  and A: and C: kP ℜ⊂ nnP ×ℜ→

mmP ×ℜ→  are functions that map the parameter set to the system 
dynamics. In what follows  denoted the subset of P for which stableP
A(p) is a stability matrix, that is, A(p) is stable if and only if 

stablePp ∈ . The remaining elements of P form the set . We unstableP
assume that P is a compact subset of a finite dimensional space and 
that A and C are continuous functions. Because of these assumptions, it 
is straightforward to show that  is also compact. In the sequel unstableP
we derive conditions on p that are sufficient to guarantee that x con-
verge to zero exponentially fast. We will also compute an upper 
bound on the transient response of the output y. 

For a given time-varying parameter p and t >τ> 0, let 
),( tTp τ denote the amount of time in the interval ( ), tτ  that p re-

mains in . Formally, unstableP

∫=
t

p dxsptT
τ

χτ ))((:),( ,       (4) 

where χ: P→{0,1} denotes the characteristic function of , i.e., unstableP





∈
∈

=
unstable

stable

Pp
Pp

p
1
0

:)(χ  

The integral in (4) is well defined because the piecewise-
continuity of p and the compactness of  guarantee that unstableP

)( pχ  is also piecewise-continuous. We will say that Σp has brief  
instabilities if 

)(),( 0 τατ −+≤ tTtTp , 0≥≥∀ τt , 

for some T , 00 ≥ [ 1.0∈ ]α . The scalar T  is called the instabil-0

ity bound and α  the asymptotic instability ratio. 

2.1 Stability 
We now provide conditions under which system (3) is stable in the 
presence of brief instabilities. 
Lemma 2.1 Consider the LPV system Σp defined by (3) and as-
sume there exist positive definite matrices  and mmR ×ℜ∈

nnX ×ℜ∈  and positive scalars 0λ , µ such that 

                                                           
1 We say that a signal v: [0, ∞)→  is piecewise continuous if v 
has a finite number of discontinuities on any finite interval. 

kℜ
23
XpXAXpA T
0)()( λ−≤+ , ,          (5) stablePp ∈∀

PpXAXpA T µ≤+ )()( , ,      (6) unstablePp ∈∀
and 

)()( pRCpCX T≥ , .           (7) Pp ∈∀
Further assume that Σp has brief instabilities with instability 

bound  and asymptotic instability ratio 0T
µλ

λ
αα

+
=<

0

0* . 

Then, x and y converge to zero exponentially and 
)0()0())( 00 )( Xxxety TTT µλ +≤(tRy ; , along solutions of 0≥∀t

(3). 
Note. When (5) holds, (6) will always hold for sufficiently large µ. 
Moreover, we can always scale P so that (7) also holds. 
Proof: For a particular solution x of (3), let 

)()(:)( tXxtxtV T= . 

From (5)-(6) it follows that V  while V0λ−≤ stablePp ∈  and 

VV µ≤  while unstablePp ∈ . Therefore, 

)()( ),()),((0 ττµττλ VetV tTtTt pp +−−−≤ , 0≥≥∀ τt .      (8) 
By assumption, Σp has brief instabilities with instability bound 

0T  and asymptotic instability ratio α. Let )(: 00 µλαλλ +−= . 
Then, 

)()(),()),(( 000 τλµλτµττλ −−+≤+−−− tTtTtTt pp , (9) 

0≥≥∀ τt . Using (8) and (9) yields 

)()( )()( 00 ττλµλ VetV tT −−+≤ , 0≥≥∀ τt . 
Furthermore, (7) implies that 

)0()0()()()()( 00 )( XxxetXxtxtRyty TtTTT λµλ −+≤≤  (10) 
for every , thus completing the proof. ■ 0≥t

The results above shows that  and  decay expo-XxxT RyyT

nentially along solutions of (3) provided that 0>λ . 
LPV models such as (3) are often used to model nonlinear sys-

tems where the time-varying parameter p is a function of the state, 
e.g., 

)),((:)( ttxftp = , 

where f: . When this happens (5)-(7) often do Pn →∞×ℜ ),0[
not hold globally and a local version of Lemma 2.1 is needed. Take 
a positive definite matrix  and consider the set of states mm×ℜ∈R
for which the output y is guaranteed to be in the ellipsoid defined by 

1≤RyyT , i.e., 

} ,1)()(  :{: PpzpRCpCzz TTn ∈∀≤ℜ∈=Ω . 
We now consider  a version of Lemma 2.1 that is local to the set 

Ω. To this effect, suppose that there exists a symmetric positive defi-
nite matrix  and positive scalars nnP ×ℜ∈ 0λ , µ for which 

XpXAXpA T
0)()( λ−≤+ , stablePtptxt ∈Ω∈∀ )( ,)( : , (11) 

XpXAXpA T µ≤+ )()( , unstablePtptxt ∈Ω∈∀ )( ,)( : , (12) 

)()( pRCpCX T≥ , .  (13) Ω∈∀ )( : txt
By requiring that the initialization of (3) satisfy 

1)0()0(00 )( <+ Xxxe TTµλ , it is straightforward to prove by contra-
diction (cf. equation (10)) that x(t) will always remain inside Ω along 
solutions to (3). The following corollary of Lemma 2.1 is thus proved. 
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Corollary 2.2 Assume that (11)-(13) hold. Suppose that Σp has 
brief instabilities with instability bound  and asymptotic insta-0T

bility , and assume that . Then, x *αα < 00 )()0( TT eXxx µλ +−≤)0(
converges to zero exponentially fast along solutions of (3), without 
leaving Ω. 

2.2 Performance 
Suppose now that an input and an extra output are added to the LPV 
system considered in Section 2.1 to obtain the new system 

Σp := , , .     (14) upBxpAx )()( += xpCy )(= xpDz )(=
The analysis that follows shows how to compute the L2-induced 

norm from u to z when p has brief instabilities. 
Lemma 2.3 Consider the LPV system Σp defined by (14) and as-
sume there exist positive definite matrices  and mmR ×ℜ∈

nnX ×ℜ∈  and positive scalars 0λ , µ, and γ  such that 

X0λ−≤ℑ , ,     (15) stablePp ∈∀
Xµ≤ℑ , ,     (16) unstablePp ∈∀

and 
)()( pRCpCX T≥ ,   . Pp ∈∀

where

2

)()()()()()(
γ

T
TT pDpDXpBpXBpXAXpA +++=ℑ .(17) 

Suppose Σp has brief instabilities with instability bound  and 0T

asymptotic instability ratio  and that u is bounded. Then x *αα <
and y remain bounded along solutions of (14), with 

))()0()0(()()(
0

2)( 00 dssuXxxetRyty
tTTT ∫+≤ +µλ , 0≥∀t . 

Moreover, the L2-induced norm from u to z is no larger than 

)( 00

0
)( 00

µλαλ
λγ

µλ

+−

+ Te
 and both x and y converge to zero if u 2L∈ . 

Proof: For a particular solution x of (14), let V . )()(:)( tXxtxt T=
Consider now an interval  on which . From (15) ),( 21 tt stablePp ∈
it follows that 

222
0

−−+−≤ γλ zuVV  
on this interval and therefore 

τ
γττ

τλλ d
e

zu
e

tVtV
t

t ttt ∫ −

−

−

−
+≤

1 010 )(

222

)(
1 )()()()( , . (18) ],[ 21 ttt ∈

Similarly, on an interval (  on which , it fol-), 32 tt unstablePp ∈
lows from  (16) that 

τ
γττ

τµµ d
e

zu
e

tVtV
t

t ttt ∫ −−

−

−−

−
+≤

22 )(

222

)(
2 )()()()( , . (19) ],[ 32 ttt ∈

Iterating (18) and (19) over consecutive intervals yields 

ds
e

szsu

e
VtV

t

tsTtsTsttTtTt pppp ∫ −−−

−

−−−

−
+≤

τ µλτµττλ

γτ
),()),((

222

),()),(( 00

)()()()(

0≥≥∀ τt . Using the above relationship, the two follow-
ing inequalities are also obtained for 0≥≥∀ τt : 

ds
e

su

e
VtV

t

tsTtsTsttTtTt pppp ∫ −−−−−−
+≤

τ µλτµττλ

τ
),()),((

2

),()),(( 00

)()()(  (20) 

and 
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.
)(

)()(

),()),((

2

),()),((),()),((2

2

0

00

ds
e

su
e

Vds
e

sz

t

tsTtsTst

tTtTt

t

tsTtsTst

pp

pppp

∫

∫

−−−

−−−−−−

+

≤

τ µλ

τµττλτ µλ

τ
γ  (21) 

Suppose now that Σp has brief instabilities with instability 
bound T  and asymptotic instability ratio α, that is,  (9) holds with 0

)(: 00 µλαλλ +−= . From (9) and (20) it can be concluded that 

ds
e

su
VetV

t

stT
tT ∫ −++−

−−+ +≤
τ λµλ

τλµλ τ )()(

2
)()(

00
00

)(
)()( ; 0≥≥∀ τt . 

Using (7), this can be shown to imply 

.
)()0()0(                  

)()()()(

0 )(

2
)(

)(
00

00
ds

e
su

e
e

Xxx

tXxtxtRyty

t

st
T

tT

T

TT

∫ −
+

++−
+≤

≤

λ
µλ

λµλ

 

Using (9) in (21) and the fact that 0),()( 0 ≥+ tsTpµλ  yields 

0≥≥∀ τt . Integrating both sides of (22) over the interval (  
gives 

ds
e

su
e

Vds
e

sz t

stTtT

t

st ∫∫ −++−−++−−
+≤

τ λµλτλµλτ λ

τ
γ )()(

2

)()()(2

2

00000

)()()(
,  (22) 

),∞τ

∫ ∫ ∫∫
∞ ∞

−++−+−−
+≤

τ τ τ λµλµλτ λ

τ
γ

ds
e

su
e

Vdsdt
e

sz t

stTT

t

st )()(

2

)()(

2

2 00000

)()()(1
. 

Exchanging the order of integration, it is easy to show that 

∫ ∫
∞ ∞+

+≤
τ τ

µλ

τ
λγλ

))()(()(1 2
)(

2
2

0

00

dssuVedssz
T

 

thus completing the proof. 
A local version of  Lemma 2.3 is derived next. To this effect take a 

positive definite matrix  and consider the set of states for mmR ×ℜ∈
which the output y is guaranteed to be in the ellipsoid defined by 

1<RyyT , i.e., 

} ,1)()(  :{: PpzpRCpCzz TTn ∈∀≤ℜ∈=Ω . 
Suppose now that there exists a symmetric positive definite 

matrix  and positive scalars nnP ×ℜ∈ 0λ , µ and γ such that 

X0λ−≤ℑ ,   stablePtptxt ∈Ω∈∀ )( ,)( : , (23) 

Xµ≤ℑ , unstablePtptxt ∈Ω∈∀ )( ,)( : , (24) 

)()( pRCpCX T≥ , ,  (25) Ω∈∀ )( : txt
where ℑ  is defined as (17). The following corollary of Lemma 2.3 
is then straightforward to derive. 
Corollary 2.4 Assume that (23)-(25) hold. Suppose that Σp has 
brief instabilities with instability bound T  and asymptotic insta-0

bility ratio , that u is bounded, and that *αα <
00 )()0()0( TT edsXxx µλ +−≤+

0

2)(
t

su∫ . Then, x converges to zero 

along solutions of (3) without leaving the set Ω. Furthermore, the 

L2-induced norm from u to z is no larger than 
λ

λγ
µλ

0
)( 00 Te +

. 
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3 Application: Design of integrated vision/inertial filters 
In this section we apply the ideas formulated above to the design 
of integrated vision/inertial filters. A basic filtering structure has 
been introduced in [10], where the authors obtained sufficient con-
ditions for the existence of nonlinear integrated vision/inertial 
filters with guaranteed regional stability and performance. These 
results are extended in this paper to include so-called out-of-frame 
events. 

3.1 Problem formulation 
This section introduces the navigation problem that is the main focus 
of the paper and describes its mathematical formulation in terms of an 
equivalent filter design problem. For the sake of clarity, we first intro-
duce some required notation and review the kinematic relationships of 
an aircraft / ship carrier ensemble, where the former is equipped with a 
vision based system. 

Consider Figure 1, which depicts an aircraft equipped with a vi-
sion camera operating in the vicinity of a ship. Let {I} denote an iner-
tial reference {B} a body-fixed frame that moves with the aircraft, 
and {C} a camera-fixed frame. The symbol {S} denotes a ship-fixed 
body frame. The following symbols will be used  (see Figure 1): 
•  - position of the origin of {B} measured in T

BBBB zyx ]  [=p
{I} (i.e., inertial position of the aircraft); 

•  - inertial position of the ship; T
SSSS zyx ]  [=p

•  (abbv. ) - relative position of the ship with SBp Tzyx ]  [=p
respect to the aircraft, resolved in {I}; 

•  (abbv. ) - relative position of the ship SB
B p T

cccc zyx ]  [=p
with respect to the aircraft, resolved in {C}; 

•  - linear velocity of the origin of {B} measured in {I} (i.e., Bv
inertial velocity of the aircraft); 

•  - inertial velocity of the ship; Sv

•  - linear acceleration of {B} with respect to {I}, resolved in aB

{B}; 
• ω - angular velocity of {C} with respect to {I}, resolved in {I} 

( ); T
zyx ]  [ ωωωω =

•  - vector of roll, pitch, and yaw angles that pa-T]  [ ψθφ=Λ
rameterize locally the orientation of frame {C} with respect to 
{I}. 

Given two frames {A} and {B},  denotes the rotation matrix RA
B

from {B} to {A}. In particular,  (abbreviated R) is the rotation RI
C

matrix from {C} to {I}, parameterized locally by , that is, Λ
)(ΛRR = . 

3.2 Kinematic relations 
The rotation matrix R satisfies the orthonormality condition 

1=RRT . Furthermore, [12]: 
)(ωRSR = ,           (26) 

where 

















−
−

−
=

0
0

0
:)(

xy

xz

yz

S
ωω

ωω
ωω

ω ,  (27) 

is a skew symmetric matrix, that is, . The matrix S satisfies SST −=
the relationship , where a, b are arbitrary vectors and baba ×=)(S
23
×  denotes the cross product operation. Furthermore, ωω =)(S . 

 
Figure 1: Coordinate systems 

We introduce the following assumption: 
A1 - the ship 's inertial velocity  is constant and different from Sv

zero. 
From the above definitions, it follows that 

C
I

CBS Rppp −=  ⇒ ( ) BSC
I

C dt
d

dt
dR

dt
d ppp 2

2

2

2

2

2

−= , (28) 

and since 02

2

=Sdt
d p  (assumption A1) we obtain 

( ) BC
I

C dt
dR

dt
d pp 2

2

2

2

−= .     (29) 

Equation (29) shows that aside from a change in sign, the relative 
acceleration of the ship with respect to the aircraft resolved in {I} is 
equal to the aircraft's inertial acceleration resolved in {I}. However, in 
the case of strapdown inertial navigation systems widely in use today 
[13] the aircraft's inertial acceleration is given in {B}. Therefore, since 

ap BI
BB R

dt
d

=2

2

 

it follows that 

( ) ap BI
BC

I
C RR

dt
d

=−2

2

.  (30) 

The nonlinear filters developed in this paper provide estimates of 
the relative position and velocity of an aircraft with respect to a point 
on the ship. This information, together with the aircraft's inertial veloc-
ity, is sufficient to estimate the ship's inertial velocity and, therefore, 
its heading. As argued in [14], in the unstructured environment of sea 
operations the best way to find a ship is by using an IR (infrared) cam-
era. As shown in Figure 2, simple thresholding of an IR image will 
easily provide information on the coordinates of the centroid of the 
ship's hottest region (usually its smokestack or boiler room).  There-
fore, it is only natural that the origin of the ship's coordinate system 
{S} be attached to that point. It is with respect to this same point that 
the proposed nonlinear filters obtain relative position and velocity. In 
the immediate vicinity of the ship, where the relative orientation be-
comes critical, standard structure from motion solutions can be used 
[15]. 

We assume that the image of the origin of {S} acquired by a cam-
era installed on-board the aircraft is obtained using a simple pinhole 
camera model of the form [16] (see Figure 3) 









==









C

C

C
CCCf z

y
x
fzyx

v
u

),,(π . 

where f is the focal length of the camera and [  are the image Tvu ] 
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coordinates of  in the camera's image plane. The T
CCCC zyx ]  [=p

natural choice for [  is the centroid of the image points associ-Tvu ] 
ated with the ship’s smokestack. These points can be easily obtained 
by thresholding from the IR image of a ship, as can be seen in Figure 
2. 

RI
B

0
I

Cp=

( ) CC xθ cossin −−=
θ

( )







+=
−=

=
= (

,

Cm

BI
B

g
RG
py

av
vp

We also make the following assumptions: 
A2 - , that is, the ship is always located in front of the cam-0>Cx

era's image plane; 
A3 - the rotation matrices  and  are available from the on-RI

C

board attitude measurement system. 
This assumption is quite reasonable, considering the sophistication 

achieved by such systems today. 

 
Figure 2: IR image of a ship 

 
Figure 3: Geometry of the vision/altimeter process model for 0=φ  

Suppose the aircraft is equipped with a barometric-based sensor 
that provides a measurement of the altitude of the aircraft with respect 
to the mean sea level. Assuming the aircraft is sufficiently away from 
the ship (so as to neglect the height  of the ship's deck above the Sh
mean sea surface), we may assume that 

A4 - h . =S

Then, using the relation  the altitude measurement CRp
yields 

CC zygz φθφθθφ coscossin, += p . 

where φ  and  are the roll and pitch angles in the rotation matrix 

RI
C  (see Figure 3). 

We now introduce the underlying design model that plays a 
fundamental role in this paper. Let y . Then, the model Tzvu ]  [=
that we consider can be written as 

+
,

),

y

am

w
w   (31) 
23
where ( ) 33: ℜ→ℜCg p  is defined by 

( ) ( )
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u

p
p

p
θφ

π

,
. (32) 

and  and  denote the measured values of a and y, respec-ma my
tively, the measurements being corrupted by the process noises w  a

and . In what follows, the deterministic set-up of Hyw ∞ filtering [17] 
will be adopted. 

3.3 Problem definition 
The problem that we consider in this paper consists of deter-
mining the relative position and relative velocity of an aircraft 
with respect to a landing site using vision and other on-board 
passive sensors. For the sake of clarity, we first tackle the sim-
plified problem of designing a filter with no measurement noise 
in the model. This exercise is simple, yet it captures some of 
the key ideas used in the development that follows. 

The additional notation that is required is introduced next. 
We let p  and  denote estimates of p and v, respectively. In ˆ v̂
the camera frame, they are denoted by p , . We assume Cˆ Cv̂
that the orientation of the camera frame {C} with respect to {I} 
is restricted through the set 
A5 - },, :{ maxmaxmax ψψθθφφ ≤≤≤= ΛΛC . 

Notice, for example, that maxψ  should be set to π. We further 

assume that the vectors p  lie in the compact set Cˆ

A6 – . 
}
,, :{

maxmin

maxminmaxmin

zzz
yyyxxxP

C

CCCC

≤≤
≤≤≤≤= p

where ,…,  are determined from the geometry of the minx maxz
problem at hand. The set PC can be determined as follows. First, 
compute PC for a nominal orientation of the camera (usually 
inertial orientation). Determine the maximum range of camera 
orientation angles with respect to the nominal orientation. Then 
compute PC by allowing the angles to vary within these prede-
termined bounds. 

In a realistic scenario the image of the ship smokestack will 
be lost by the onboard camera due, for example, to aircraft rota-
tional motions. This phenomenon is known as an out-of-frame 
event. Formally, we define a binary signal s: [0,∞) {0,1}: →





=
. at time smokestack  the trackscamera -1

, at timeevent  frame-of-out-0
:)(

t
t

ts  

Furthermore, for a given binary signal s and t>τ> 0, let us 
denote by T ),( ts τ  the amount of time in the interval ),( tτ  that 

0=s . Formally, . ∫ −=
t

s dllst
τ

τ ))(1(:),(T
The following assumption plays a crucial role in the 

development that follows. 
A7 - s has brief out-of-frame event, i.e., 

)(),( 0 τατ −+≤ tTtTs , 0≥≥∀ τt , for some T , 00 ≥
]1,0[∈α . 

Navigation filter design will aim at ensuring that the esti-
mates  of p  lie in a compact set Cp̂ C
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where dx, dy and dz are positive numbers, and . minxdx <
F1: Regional Stability. Consider the process model (31) and 
assume that . For a given , find a number 0== ya ww CP̂

00 >α , and a dynamical system (filter) F that operates on  my
and  to produce estimates  of p, and  of v in the presence ma p̂ v̂
of out-of-frame events, such that: 
•  for any t , CC Pt ˆ)(ˆ ∈p 0>

• 0ˆˆ →−+− vvpp  as ∞→t , 
provided that 

( ) 0)0()0(ˆ),0()0(ˆ α<−− T
CC vvpp . (33) 

Notice that the problem described aims at finding a filter that 
complements the information available from the vision system / 
barometric pressure sensor with that available from the inertial 
sensors. 

The problem F1 focuses on the stability of the filter. The sec-
ond filtering problem addresses the scenario where the perform-
ance of the filter in the presence of disturbances is considered. 
F2: Regional Stability and Performance. Consider the process 
model (31) where1 , 2] [ LT

ya ∈= www ω≤
2

w  and let the 

sets  and  of allowable position vectors and allowable CP CP̂
estimation vectors be defined as above. For given numbers 0>γ  

and 00 >α , find a stable filter F that operates on  and  to my ma
obtain estimates  of p,  of v in the presence of out-of-frame p̂ v̂
events, such that if (33) holds, the filter satisfies the following 
conditions for all  that 2L∈w ω≤

2
w : 

•  for all , CC Pt ˆ)(ˆ ∈p 0≥t
• 0ˆˆ →−+− vvpp  as ∞→t 2, 

• γ<
iewT
,2

, where  is the estimation error and ppe −= ˆ:

ew → :ewT . 
Notice the technical requirement that an allowable set of position 
estimates  be specified. As is shown later, this requirement is CP̂
essential to establishing the boundedness of a certain operator for 
all possible values of the estimates p . In practice, the “size” of the ˆ

allowable region P̂  plays the role of a design parameter. 

3.4 Proposed solution 
This section describes the solutions to problems F1 and F2. First, 
however, we need the following basic results. Let H denote the 
Jacobian of  with respect to . From the definition of ( Cg p ) Cp

( Cg p )

                                                          

, it follows that 

 
1 Given a signal z we denote by 

2
z  the L2-norm of z, i.e., 

∫
∞

=
0

2

2
)( dttzz . 

2 As long as  we always get convergence to zero. 2L∈w
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H p  (34). 

It is easy to check that det( . Therefore, H is not CC zxfH 32) −=
invertible if and only if 0=z This implies that . ( )C  isH p  in-

vertible for all admissible values of Cp , φ , and θ . 
The next result is adopted from [5] and plays a key role in the 

development that follows. In particular, identity (35) makes it 
possible to show that the proposed nonlinear filter error dynamics 
represent an LPV system. This leads to the utilization of the LPV 
framework to reduce the estimation problem to that of determining 
the feasibility of a set of LMI's (see proofs of Theorems 3.3 and 
3.4). 
Lemma 3.1 Let ( )Cg p  be given by equation (32). Then 

( ) ( ) )ˆ)(ˆ(),ˆ(ˆ CCCCCCC HLgg ppppppp −=− ,           (35) 

where H is given in equation (34), p and T
CCCC zyx ]ˆ ˆ ˆ[ˆ =
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Lemma 3.2 Let , and  be the 336 : ×ℜ→ℜϕ 333
1  : ×ℜ→ℜϕ

operators defined by  )ˆ( CH p= ),ˆ()ˆ( CCC
T HL ppp),ˆ( CC ppϕ

and . Then )ˆ()ˆ( CC
T HH pp)ˆ(1 Cp =ϕ 0) >,ˆ( CC ppϕ , 

0) >ˆ(1 Cpϕ , CC P∈∀p̂  and . CP̂Cˆ ∈p
Proof: The proof follows directly from assumptions A1-A3 and 
the definitions of H and L. ■ 

The following result provides a solution to problem F1. 
Theorem 3.3 Let  be given and assume that A1-A7 hold and CP̂

1
min

minmax <
+−

=
x
xxrx

dx
. Suppose there exists a matrix 

66×ℜ∈= TXX  and positive constants α, α0, λ0, µ, T0, such that 
*αα <  and 

0>X ,             (36) 

XCCrXFXF T
x

T
0

2)1(2 λε −≤−−+ ,      (37) 

XXFXF T µ≤+ , (38) 

02 ≥− − CCX Tδ , (39) 
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Define a filter (see Figure 4) 
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where 
66







=
, at time smokestack  the trackscamera -1

, at timeevent  frame-of-out-0
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and 
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Then the filter F1 solves the filtering problem F1, provided that (33) holds. 

1K

estimates of image coordinates
and of altitude

estimates of image coordinates
and of altitude

estimate of
relative position

 in C

estimate of
relative position

 in C

estimate of
relative velocity

in  I

estimate of
relative velocity

in  I

estimate of
relative position

resolved in  I

estimate of
relative position

resolved in  I

image coordinates
and altitude

INS acceleration

Jacobian of hφ,θ
Jacobian of   h θ

RC
I

RI
C

TH
Filter GainsFilter Gains

∫ ∫

2K  θh
Occlusions and 

out-of-frame events
Occlusions and 

out-of-frame events

 
Figure 4: Filtering structure: filters F1 and F2 

Proof: Define the error state e  and epp −= ˆ:1 vv −= ˆ:2 . Let 

[ TTT
21 eee = ] . Then, using Lemma 3.1 and simple algebra it can be 

shown that the error dynamics can be written as 
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where . Notice that the error dynamics given by [ TTT KKK 11  := ]
(44) represent an LPV system that depends on ( . Now, ),, 1 sC ep

to show that , it is sufficient to show that CC P̂ˆ ∈p δ≤1e , or 

equivalently that [  remains in ]TTT
21  ee } δ≤eC{:=Ω e . From 

Corollary 2.2 and A7, we conclude that this is true provided that 
there exists a matrix  and constants 0>X 0λ , µ, such that (38) 
and (39) hold, 
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for all times for which [ ] , and , and Ω∈
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[ ] [ ] 00 )(
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Inequality (46) follows from [ ] 021 (0) )0( α≤TT ee  and (40). In 

the following, we focus on the solvability of (45). Prom (43), we 
conclude that (45) is equivalent to 
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Because of this and the fact that C , we conclude 
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that (37) implies (47) in the set Ω. Now, from Corollary 2.2 it 
follows that δ≤1)(te , 0≥∀t  and  as 0)(2 →t),(1 t ee

∞→t . ■ 
The solvability of the inequality (37) is addressed in [10]. 

There, it is shown that the inequality has a solution if and only if 
1<xr . The next theorem provides a solution to the filtering 

problem F2. 
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Define a filter (see Figure 4) 
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where 
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Then the filter F2 solves the filtering problem F2 if (33) holds. 
Proof: Define the error state  and eppe −= ˆ:1 vv −= ˆ:2 . 

Then, the error dynamics admit the state-space realization 
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where [ ]TT
y

T
a  w: ww =  and . We now show that [ TTT KKK 11  := ]

if the inequalities (50)-(54) are satisfied, then p  for all CC P̂ˆ ∈

2L∈w , ω≤
2

w , when (33) holds. 
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Because of the first inequality in (49), this inequality holds 
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and then, using the second inequality in (49), we further conclude 
that this inequality holds if 
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Here we used the fact that . From Schur comple-
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ments [7] and the definition (41), (60) holds because of (51). The theo-
rem then follows from Corollary 2.4. ■ 

The next theorem derives necessary and sufficient conditions un-
der which (51) is satisfied. 
Theorem 3.5 Let F, γ and ε and be defined in Theorem 3.4. Then 
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Proof: Follows by rescaling γ in the proof of Theorem 4.5 in [10]. 
Remark 3.1 Theorem 3.5 shows that the LMI (51) is feasible if and 
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This inequality imposes a lower bound on the achievable values of 
γ . Furthermore, since )(: 00 µλαλλ +−= , it follows that 
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The above expression shows that the lower bound on the achiev-
able γ  in the absence of out of frame events converges to the lower 
bound derived in [10]. 

The bound derived in (61) is similar to the classical Positional Dilu-
tion of Precision (PDOP) metric that is commonly used in navigation 
systems to determine a lower bound on the achievable error covari-
ance as a function of geometry of the underlying navigation problem 
[20, 21, 13]. Using our notation, the classical PDOP can be written as 

1))()(( −= CC
T HHtrPDOP pp . 

We therefore see that the new bound derived in this paper cap-
tures a worst case performance scenario and the estimate of xC in-
creases the lower bound on the achievable γ , since 

0)1(1 2 >−> xr . 
Remark 3.2 The filters used in this paper borrowed from the struc-
ture of the nonlinear observer proposed in [5]. Both filters are de-
signed for a process model that exhibits linear dynamics and nonlinear 
measurement equations. In view of this fact, one is naturally driven 
to ask the following question: why not simply solve the measure-
ment equation to obtain estimate of  that can in turn drive a linear Cp
filter with a much simpler structure? This technique was, in fact, ap-
plied in an earlier version of the work reported in [5]. However, as 
pointed out by the authors the latency inherent to this approach led 
to unacceptable results. This stemmed from the fact that the estimate 
of  obtained by the nonlinear solver from the measurement equa-Cp
tion and used by the linear filter represented a “delayed version” of 
the true position. 

Furthermore, the algorithm used by the nonlinear solver re-
quires inverting the Jacobian. In a noisy environment this may lead 
to excessive noise amplification. This problem is entirely avoided by 
the filters proposed in this paper as well as by the nonlinear observer 
in [5]. Finally, the gains used by every filter in this paper are of the 
form similar to the gains of optimal filters obtained for the linear time 
invariant (LTI) case. This is important, since in the LTI case even if 
the output matrix is invertible the optimal gain does not require in-
version of this matrix. 

3.5 Numerical implementation and performance studies 
In the absence of out-of-frame events ( 0,0 0 == Tα ) the matrix 
inequalities developed in Theorem 3.4 can be reduced to the following 
form: 
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where ε  is inversely proportional to the size of , CP̂ γ  deter-

mines the filter’s performance and 0α  - the bound on the initial 
error in position and velocity estimates. Clearly from the design 
standpoint, one would like to minimize ε , γ  and maximize 0α . 

Let , , 2
1 γ=w 2

02
−=αw ε=3w . Define the cost func-

tional , where c3w322 cwc +11wcJ += 1, c2, c3 are positive 
weights to be selected by the designer. Now the design problem 
discussed above can be reduced to the following convex opti-
mization problem: 
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This optimization problem was solved numerically using MAT-
LAB's LMI toolbox [9]. The resulting values of γα and,, 0X where 
then used to study the impact of the out-of-frame events on the 
filter performance.  For example, in the absence of out-of-frame 
events the value of the performance bound γ  achieved by the filter 
was 35. However, in the presence of out-of-frame events, as dis-
cussed above, the value of γ  increases as a function of  as illus-0T
trated in Figure 5. (Recall that we assumed that on any finite interval t-
τ, t>τ the duration of an out-of-frame event is bounded above by 

)(0 τα −+ tT , ]1,0[∈α .) Since the numerical values of α obtained 
were on the order of 10-5-10-4 their impact on the levels of achievable 
γ  was negligible. Furthermore, as the graph in Figure 5 suggests T  0

exhibits logarithmic dependence on γ . This implies that for values of 

5.20 >T sec, small increases in T  result in large increases in achiev-0

able γ , i.e. the filter performance deteriorates rapidly once T  passes 0

this threshold. 
Another interesting trade-off is shown in Figure 6, where 

for two value pairs of )55,52.0(),( 0 =γT , ( )250,5.2(),0 =γT  
the graphs of ω  v.s. α0 are plotted. Recall, in this paper α0 
defines the bound on the norm of the initial estimation error 
(33), while ω  defines the bound on the norm of the sensor 
noise. Figure 6 shows the trade-off between the size of the 
initial estimation error tolerated by the filter and the bound on 
the sensor noise. Clearly, as T  increases the achievable val-0

ues of ω  and α0 decrease. 
236
 
Figure 5: Achievable γ  versus T  0

 
Figure 6: Achievable α0 versus ω  

3.6 Experimental setup and flight-test results 
This section describes the experimental setup and the flight 

test experiments that were performed to test the performance 
of the nonlinear filter obtained in the previous section. The 
Frog UAV operated by the controls lab at NPS was equipped 
with an Infrared video camera. The camera included a Boeing 
U3000A uncooled 8-12 microns (micrometers). The pixel reso-
lution of the camera was 320×240. The UAV was also 
equipped with a Trimble AgGPS 132 Differential Global Posi-
tioning System (DGPS). An illustration of the flight test setup 
is provided in Figure 7. 

 
Figure 7: Flight test setup 
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Flight tests were conducted at Camp Roberts air field oper-
ated by NFS. Charcoal grills were used to model the hot spots 
on the ship (see Figure 8). Samples of UAV trajectories re-
corded by onboard DGPS are shown in Figure 9. Similarly, 
samples of IR images collected by the onboard IR camera are 
shown in Figure 10. 

  
Figure 8: Flight test setup: charcoal 

grills 
Figure 9: 2D representation of 

DGPS-recorded trajectories 
The image processing problem, i.e. that of finding the hot 

spots in the image on the runway, turned out to be nontrivial 
due to the presence of multiple hot spots in the surrounding 
area. This is In contrast to finding hot spots on a ship, where 
they are clearly much hotter than the ocean (see Figure 11). 

  

 

Figure 10: Examples of IR images: a) at the range of 450m, b) 80m 

Figure 11: Comparisons of IR images: a) of a ship and b) of the hot spots 
As a result an image-processing algorithm was developed 

to find and track the hot spots observed by the IR camera on-
board the UAV Frog. The algorithm consisted of two steps. 
The first step included finding the hot spots in the initial image 
and involved a search over the complete image plane (see Fig-
ure 12). Once the hot spots were found in the initial image, they 
were tracked for the remainder of the approach (see Figure 12). 
The critical element of this second step was reliance on the inertial 
data to predict the approximate location of the hot spots in the next 
image and to recover from the out-of-frame events. 

The image plane coordinates and GPS altitude were used by 
the integrated IR/Inertial filter to compute relative position and 
velocity with respect to the nearest hot spot. Figure 13 shows the 
results of applying the integrated IR/Inertial filter to the flight test 
data. In particular, the upper graph shows the DGPS landing ap-
proach trajectory. The bottom left graph shows the estimation er-
rors computed by comparing the DGPS position with the position 
estimates produced by the filter. Finally, the bottom right graph 
shows the response of the filter to an out of frame event. Clearly, 
the filter performed well. 

4 Conclusions 
This paper introduced the concept of LPV systems with brief in-
stabilities and derived new results for stability and performance 
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analysis of such systems, where performance is evaluated in terms 
of L2 induced norms. The main results show that stability and per-
formance can be assessed by examining the feasibility of param-
eterized sets of LMIs. These results were applied to the design of 
an integrated vision/inertial navigation filter with guaranteed stabil-
ity and performance id the presence of out-of-frame events. Numeri-
cal trade-off studies were conducted to determine filter's achievable 
performance versus the duration of the out-of-frame events. Finally, 
the filter was tested using flight test data collected by a UAV 
equipped with inertial sensors and IR camera. The results of the 
test showed the filter to perform well in the presence of out-of-
frame events. 

 

 

Figure 12: Main ideas of the first step for IR image processing 

Figure 13: Filter’s performance during final approach 
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