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ABSTRACT 
 
 
In the Command and Control mission, new technologies such as ‘sensor fusion’ 

are designed to help reduce operator workload and increase situational awareness.  This 

thesis explored the tracking characteristics of diverse sensors and sources of data and 

their contributions to a fused tactical picture. The fundamental building blocks of any 

sensor fusion algorithm are the tracking algorithms associated with each of the sensors on 

the sensor platform. In support of this study, the MATLAB program ‘fusim’ was written 

to provide acquisition managers a tool for evaluating tracking and sensor fusion 

algorithms. 

The fusim program gives the user flexibility in selecting: sensor platforms, up to 

four sensors associated with that platform, the target types, the problem orientation, and 

the tracking algorithms to be used with the sensors.  The fusim program was used to 

compare tracking algorithms in a multiple sensor/multiple target environment.  

Specifically, the Probabilistic Data Association Filter, the Interacting Multiple Models 

Filter, the Kalman Filter and the Constant Gain Kalman Filter were evaluated against 

multiple maneuvering, non-maneuvering, and fixed targets.  It is recommended that this 

study be continued to evaluate advanced tracking and data association techniques, to 

expand the program to allow attribute tracking and identification, and to study the 

Human-Machine Interface aspects of sensor fusion.     
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I. INTRODUCTION 
 
 
 

A. BACKGROUND 

The mission of airborne command and control is much more than the advertised 

“airborne early warning (AEW).”  The new buzzword for the E-2C Hawkeye Command 

and Control (C2) mission is Battle Management.  New technologies are being designed to 

help reduce operator workload and increase situational awareness.  Ideally, these new 

capabilities will help tactical aircrews manage Battle Group assets and ultimately, the 

entire battlespace.  The E-2C aircrew performs functions that cannot be replicated by a 

machine, that is, making battlespace assessments and taking charge of situations.  The 

aircrew must have a thorough understanding of the tactical picture to formulate 

appropriate responses.  The industrious aircrew will endeavor to formulate the “Big 

Picture.”  They mentally fuse all available information to create sufficient situational 

awareness (SA), to understand the tactical picture, and to decide on courses of action.  

However, situational awareness is easily disrupted by immediate threats, aircraft 

emergencies, or information overload.  It is left up to the diligent aircrew to achieve and 

maintain SA.   

Initial detection of targets within the E-2C aircraft occurs with the radar, the IFF 

detection system, and the Passive Detection System (PDS).  These systems are coupled 

with an automatic tracking system within the mission computer.  Secondary sources of 

information consist of the onboard data links including, CEC, JTIDS, Link-11, and Link-

4.  Other data sources include SATCOM data and information received via voice 
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communications (UHF SATCOM, HF/VHF/UHF LOS).  Additionally, the aircrew 

receives data such as the Air Tasking Order, Special Instructions, Airspace Restrictions, 

Rules of Engagement, Battlefield Situation Reports, and intelligence briefings prior to 

takeoff.  All available information is used by E-2C aircrew to formulate battlespace 

assessments, and to create and maintain situational awareness.  In a broader sense, the 

objective of any military engagement is to defeat the enemy with decisive, overwhelming 

force.  For our military forces to take full advantage of the information and observations 

available, they must be able to interpret their battlespace and make timely and relevant 

decisions.     

Warfare technology has continued to advance, and the battlespace has become 

much more complicated. Furthermore, the E-2C aircrew has been increasingly tasked 

with a wider variety of more demanding missions.  To keep pace with this evolutionary 

cycle of weapons advances and more complicated missions, the E-2C weapon system is 

continuing to improve.  Current weapons system improvements for the E-2C include an 

upgraded Electronic Surveillance Measures (ESM) system, a new mission computer and 

displays, the Cooperative Engagement Capability (CEC) system, and a Satellite 

Communications (SATCOM) data system.  Future upgrades include the Radar 

Modernization Program (RMP), the UHF Electronically Scanned Array (UESA) antenna, 

the Surveillance Infrared Search and Track  (SIRST) system, and the E-2C Multiple 

Source Integration system.  These weapons system improvements are designed to 

improve the detection and processing of tactical information to more fully support the 

mission and ultimately the Battle Group Commander.   
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B. PURPOSE 

This thesis explored the tracking characteristics of different sensors and sources 

of data and their contributions to a “fused” tactical picture.  This ‘fusion’ aspect implies 

that one track will represent each contact of interest in the battlespace with all available 

position, identification and intentions data displayed for each track.  How can ‘sensor 

fusion’ help with formulating a tactical picture?  What are the unique attributes of the 

different sensors and data sources that can be combined to produce an accurate tracking 

picture?  Finally, how can the different data sources be combined to best exploit the 

attributes of identification and position information?  The purpose of this thesis was to 

explore the military application of Sensor Fusion technology by creating a MATLAB-

based multiple-sensor, multiple-track simulation, and exploring some of the applicable 

tracking and fusion algorithms relevant to current and future sensor fusion capabilities.   

 

C. TOPICS RELEVANT TO SENSOR FUSION 
 

1.  Definitions 

First, a few definitions are necessary to ensure that no terminology problems are 

encountered throughout the remainder of this paper.  Currently, sensor fusion takes many 

forms, whether from industry, government services, or military applications.  The 

primary focus of this list is the military application of sensor fusion.   

Battlespace 

The term “battlespace” includes all of the area (land, sea, air, and space) of interest, all of 

the sensors and information sources that can contribute to a coherent tactical picture, all 
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of the forces (friend, enemy, and neutral), weapon systems, and all communications 

systems in the area of interest. 

Kinematic Data 

Target kinematics are usually represented by the position, course, speed, altitude, or 

accelerations and turn/climb rates [Ref. 1].   

Attribute Data 

The target attributes are the features of the target such as returned signal strength, IR or 

radar signature, or target classification and ID information [Ref. 1].   

State 

The target state [Ref. 2] is a determination of target position, course, and speed, 

depending on the current sensor measurement and the previous state estimate.  The state 

vector usually consists of the target position coordinates and the corresponding velocity 

components.  The target state can also hold estimates of turn rates or other kinematic 

data.   

Local Active Track 

A local active track (LAT) refers to a track held by a sensor that is organic to the sensor 

platform.  A track [Ref. 1] is the result of a state prediction from the tracking algorithm, 

and is based on the measurements from the sensor.    

Similar Source Integration 

Similar source integration (SSI) is the association and correlation of tracks from the same 

kind of sensors such as radar or IFF detection systems [Ref. 4]. 
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Dissimilar Source Integration 

Dissimilar source integration (DSI) is the association and correlation of tracks from 

multiple types of sensors such as an IFF-to-radar correlation or a LAT-LAT/Data Link-

LAT correlation.  A DSI must include the sensor registrations for time corrections and 

coordinate transformations [Ref. 4].   

Multiple Source Integration   

The multiple source integration (MSI) process performs the data association and 

correlation of tracks from multiple types of sensors.  The output of the MSI process is a 

database of all possible track-to-track associations [Ref. 4].   

Data Fusion   

The most recent definition of “Data Fusion” is from the Joint Directors of Laboratories 

(JDL) paper of 1998.  According to the JDL [Ref. 3], “Data Fusion” is the process of 

combining data to refine state estimates and predictions.   

Sensor Fusion 

Strictly speaking, the term sensor fusion is the combination of estimates from multiple 

sensors for the formulation of multiple tracks [Ref. 1].  The term “Sensor Fusion” is 

thrown around loosely and is sometimes taken to mean the same as the ‘data fusion’ term.  

While data fusion is truly a more encompassing term, the ‘sensor fusion’ term implies a 

distinct relationship between the measurements/observations  of the battlespace sensors 

and the fusion of the resulting information.  Therefore, ‘sensor fusion’ will be used 

throughout the remainder of this paper.   



 

 6

2.  Combat Identification 

Identification is the key element in the decision making process, i.e., the 

identification of a contact leads to a decision.  Given the identification of a contact, the 

decision-maker can decide whether to investigate, monitor, ignore, intercept, or shoot the 

contact.  For example, if a contact is flying in a zone where no friendly aircraft are known 

to be flying (with 100% certainty), the specific identity or intentions of the target may be 

irrelevant and still satisfy the conditions of combat identification (CID).  Deciding which 

contacts to process (and when) is a function of the threat (situation) assessment and the 

assets available to meet the threat (impact assessment).   Situation and impact assessment 

will be discussed in the next chapter.   

The military application of sensor fusion is primarily the fusion of all organic 

sensor track data, off-board data link information, and archived information to form a 

single fused track for each contact of interest in the area of interest.  In the CID process, 

three vital pieces of information about a contact are its position, its identification, and its 

intentions.  Depending on the source of information, these attributes can be closely 

related, such as a radar track with IFF information fused by a tracking system, or as 

diverse as an ESM line of bearing that cuts through a postulated ground emitter site.  The 

diversity of this data is precisely the purpose for studying the techniques of sensor fusion.  

The use of ID information leads to the ultimate goal of combat identification (CID) for 

weapons system engagement of enemy targets. 
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3.  The Operator’s Point of View 

The goal of sensor fusion is to ease the workload and improve the situational 

awareness of the crew.  Sensor Fusion systems are meant to aid the crew in the decision 

making process.  In other words, let the machines do the number crunching, and let the 

humans make the decisions.  One of the most difficult questions to answer is: What does 

the operator want?  Unfortunately, an old adage still applies:  If 20 different operators are 

asked for their views on how information should be displayed, the result will be 20 

different answers.  The operator is the primary interface between the display and the 

command and control decision tree.  In the case of the E-2C, each operator can act 

independently.   

With respect to sensor fusion, the individual display of information must address 

the diversity of missions within the E-2C or any other command and control platform.  

How the information is displayed is vitally important.  The display of information can be 

prioritized depending on the tactical situation and the tactical impact of the target.    The 

operator that is controlling a surface search coordination (SSC) mission does not have the 

same information and threat display priorities as the operator who is providing tactical 

control for an overland strike mission, even though both events may be happening 

simultaneously.  Instead, the operators need maximum flexibility for prioritizing their 

individual display requirements for information, threats, timelines, etc.  For the airborne 

battlefield command and control mission, displaying all mission-applicable information 

would be senseless for the user and impossible to fully interpret.  Instead, the display of 

information should reflect a relative importance to the mission at hand, the desires of the 
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operator, and the needs of the battlespace commander.  Ideally, only those threats that are 

most applicable to the operator’s mission would be displayed.   

 

D.   CHAPTER OUTLINE 

Chapter II is a discussion of Sensor Fusion and why it is important to the military.  

Chapter III is a description of modern tracking algorithms.  Chapter IV is a detailed 

description of the MATLAB based fusion simulator program, including the evaluation 

parameters of the test sets.  Chapter V describes the results of testing the tracking 

algorithms for stability, and presents the results of running several different test cases.  

Conclusions and recommendations are included in Chapter VI.   
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II. OVERVIEW OF SENSOR FUSION 

 

A.   WHY SENSOR FUSION? 

Simply put, tactical aircrews have been doing sensor fusion all along by achieving 

situational awareness with respect to the tactical picture.  This thesis was written with the 

platform and the operator as primary concerns.  The importance of the operator and the 

platform cannot be overstated: every platform has unique sensor capabilities and 

attributes, communications systems, and display capabilities.  And every operator has 

unique display requirements, depending on the platform, the sensors and data sources, 

and the mission being conducted.  The sensor/comm suite and display capabilities of the 

AEGIS cruiser and the E-2C are vastly different, yet the C2 goal is still the same.  The 

operator must be able to interpret and respond to the tactical situation depending on 

his/her mission goals.  Accurate tracking and identification are paramount to this process.  

Primarily, the operator would like to know the identification of a contact so the tactical 

impact can be determined.  The operator must consider the impact to his platform, the 

platforms under his control, the carrier, and ultimately, the entire battle group.  This is 

how Combat Identification becomes an important by-product of the sensor fusion ID 

process.  If engaging a contact is within the ROE, the operator must be able to allocate 

assets quickly and decisively without distractions from information overload, false tracks, 

or dual tracks.    

Instead of cluttering up the scope with thousands of reports, the information 

would ideally be sorted by target type, registered in time to allow a common reference 
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time, and fused with other reports and local active tracks.  This data association provides 

an identification of a track, or increases the confidence of the position report.  Even if 

there is no association with a local track, such as in the case of a known SAM site, the 

information must be displayed in a timely and relevant manner.  Additionally, the 

information could be used to cue the operator to look for contacts in an area where no 

active track exists, or to cue the radars of other platforms to search the area.  Contact 

reports that are considered an immediate threat should pop up and alert the operator so 

that the operator can respond appropriately.  The display of threat information should 

coincide with the operator’s display desires and the tactical situation.  For example, 

certain high-priority threats can be displayed anytime, anywhere on the scope.  Other 

threats/tracks may only be displayed in an area of interest, depending on the mission or 

the needs of the operator.   

 

B.   THE LEVELS OF SENSOR FUSION      
 

The Joint Directors of Laboratories (JDL) data fusion process model is the most 

commonly used model to communicate ideas about algorithms, systems, and research 

(Figure 1).  In its everyday use, the term “data fusion” generally refers to that of Level 1 

fusion.  This is not the most accurate interpretation of the term.  In Level 1 data fusion, 

all sources of information, including track data and attribute data, are combined to form a 

composite tracking picture.  In order to more fully understand the big picture on sensor 

fusion, all 5 levels are discussed below, starting with the Data Fusion Functional Model 

[Ref. 5]:   
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Figure 1.  The Data Fusion Functional Model*. 

* Reproduced From [Ref. 5] 

 

1.  Level 0 - Sub-Object Data Assessment: 

Level 0 is considered to be pre-object processing.  By definition [Ref. 3], Level 0 

fusion is, “estimation and prediction of signal/object observable states on the basis of 

pixel/signal level data association and characterization.”  In other words, what kind of 

targets or signals are expected in the area of interest?  From this early assessment, we can 

estimate and predict the signal or object observable states.  Types of data would include 

signal detected on the basis of integration of a time-series of data or feature extraction 

from a region in imagery.    

 

2.  Level 1 - Object Assessment: 

Level 1 fusion is the level that is normally associated with the term “sensor 

fusion,” and is the primary focus of this Thesis.  At this level, the raw measurements are 

  

••  IInntteell  SSoouurrcceess  
••  AAiirr  

SSuurrvveeiillllaannccee  
••  SSuurrffaaccee  
SSuurrvveeiillllaannccee

HHuummaann  
CCoommppuutteerr  
IInntteerrffaaccee  

LLeevveell  00  
PPrroocceessssiinngg  
SSuubb--oobbjjeecctt  

DDaattaa  
AAssssoocciiaattiioonn  

LLeevveell  11  
PPrroocceessssiinngg  
OObbjjeecctt

RReeffiinneemmeenntt

LLeevveell  22  
PPrroocceessssiinngg  
SSiittuuaattiioonn  

RReeffiinneemmeenntt 

LLeevveell  33  
PPrroocceessssiinngg  

IImmppaacctt  
AAsssseessssmmeenntt  

LLeevveell  44  
PPrroocceessssiinngg  

PPrroocceessss  
RReeffiinneemmeenntt  

DDaattaa  BBaassee  
MMaannaaggeemmeenntt  SSyysstteemm  

  
  

DATA FUSION DOMAIN 

Support 
Database

Fusion 
Database 



 

 12

used to estimate the current states of each entity.  All organic sensor information is 

combined with off-board information including data links, SATCOM data, Order of 

Battle databases, ATO/SPINS/ROE, and other database information.  During “object 

assessment,” estimation and prediction of object states occurs based on the measurements 

and/or observations.  The kinematics and attributes of the object answer the questions of 

where and who the object is.  According to the JDL [Ref. 3], Level 1 fusion is, 

“estimation and prediction of entity states on the basis of observation-to-track 

association, continuous state estimation (kinematics), and discrete state estimation (target 

type and ID).”  Mainly, Level 1 fusion provides the composite tracking picture.   

 

3.  Level 2 - Situation Assessment: 

In Level 2, a thorough threat assessment is conducted based on the current 

intelligence reports and other measurements of troop/hardware movements, 

communications, etc.  By JDL definition [Ref. 3], Level 2 fusion is, “estimation and 

prediction of relations among entities, to include force structure and cross force relations, 

communications and perceptual influences, physical context, etc.”   Level 2 fusion 

involves associating the hypothesized entities or tracks into aggregations.  According to 

the JDL [Ref. 3], the aggregate state  can be represented by a network of 

interconnectivity and relations between the elements.  The relations considered include 

physical, organizational, informational, and perceptual according to the mission of the 

entity.  The term ‘situation’ is used to describe an aggregate object of estimation.   

There are many different approaches to fusing the information at Levels 2 and 3.  

For example, Bayes theorem and Bayesian belief networks, neural networks, fuzzy logic, 
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genetic algorithms, and Hidden Markov Models (HMM) [Ref. 5] can be used to model 

the states and estimate situations.   

 

4.  Level 3 - Impact Assessment: 

The JDL [Ref. 3] definition of Level 3 fusion is, “estimation and prediction of 

effects on situations of planned or estimated/predicted actions by the participants to 

include interactions between action plans or multiple players (e.g., assessing 

susceptibilities and vulnerabilities to estimated/predicted threat actions given one’s own 

planned actions).”  The Impact Assessment is also known as Threat Refinement [Ref. 6].  

Threat Refinement is used to estimate enemy capabilities, identify threat opportunities, 

estimate enemy intent, and determine levels of danger to the friendly forces.  In doing so, 

Level 3 fusion focuses on estimating the likelihood of hostile actions, and determining 

the projected outcomes if hostile actions do occur.  Part of Level 3 fusion [Ref. 5] is 

threat prediction, which attempts to answer the following question:  Based on enemy 

capabilities (firepower and preparedness), what enemy actions pose a threat and to what 

extent could the enemy damage friendly forces?  One key element to predicting the threat 

is determining the possible enemy courses of action (COA).  These COA’s could be 

based on lessons learned form previous actions, or hypothesized based on terrain and 

natural barriers such as cliffs, lakes, rivers, and oceans.  To quantify the COA’s, the 

likelihood of each possible COA is estimated based on the observations.    

During the generation of COA’s, the information from the lower level fusion 

engines would be necessary for accurate and sensible predictions.  For each course of 

action, the impact to blue forces must be assessed to determine the probable outcome.  
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From this evaluation, the most threatening COA’s can be identified for the battlefield 

commander.  For example, the Enemy Order of Battle would include all of the enemy 

forces in the battlespace.  Based on the units involved, the hardware, the terrain, and 

many other observations about the enemy, the candidate COA’s can be determined.  

Depending on their movements (the measurements or observations), the likelihood that 

the movements are associated with a particular COA can be determined.  This likelihood 

can be determined for each candidate COA, and the unlikely COA’s can be discarded.  At 

this point, the possible outcomes of particular enemy actions can be determined.  Are the 

enemy forces assembling, attacking, defending, or deploying?  Or, is a particular unit 

attacking while another is staying back to defend against a counter attack?  Next, a 

determination can be made about the likely outcome of an engagement for each possible 

COA.  From this determination, the threat level to friendly forces can be predicted using 

a simple decision tree.  Finally, an overall likely threat to friendly forces from all possible 

enemy courses of action can be determined.  Should an engagement occur, what is the 

likely outcome? 

 

5.  Level 4 - Process Refinement:  

First, a definition is necessary to complete this section.  According to JDL [Ref. 

3], Level 4 fusion is, “adaptive data acquisition and processing to support mission 

objectives.”  In Level 4 fusion, resources are assigned tasks to support the formal 

relationship between estimation and control, and association and planning.  Simply put, 

Level 4 fusion is resource management to support the particular operator needs.  Fusion 

across the levels takes place to arrive at the most probable enemy course of action based 
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on the measurements, the enemy’s capability, and the possible courses of action [Ref. 7].  

The operator requirements drive the optimization process of Level 4 fusion.  Particular 

information needs can be used to cue sensors or to optimize the fusion process at each of 

the other levels.     
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III. SENSOR FUSION TECHNIQUES AND PRACTICES 
 
 
 
A.   TRACKING FUNDAMENTALS 

 
1.  General 

The fundamental building block of any sensor fusion algorithm is the tracking 

algorithm associated with each of the sensors on the sensor platform.  Issues relevant to 

tracking are:  track initiation, track maintenance, drop track criteria, and handling of false 

tracks.  Additionally, how the raw data is combined within the processors and mission 

computer can have an impact on how the data is combined at the data fusion level.  

Primarily, this discussion will focus on the algorithms required for track ‘maintenance’ 

vice track initiation or drop track criteria.    

 

2.  Sensors and Sources   

In an ideal situation, every threat and possible outcome of an engagement could 

be considered prior to firing a first shot.  Naturally, the quality of fusion information 

given to decision makers is only as good as the sensors and sources of the information 

that are used as inputs.  Sensor types are as diverse as the platforms that carry them.  

Radars can vary by mission, type, low/high frequency, scan types, pulse repetition 

frequencies, and by many other differences.  Electronic Surveillance Measures systems 

vary in their abilities to distinguish signal parameters, measure angles of arrival, or 

determine signal identification.  For the purposes of Sensor Fusion, sensors and sources 

provide the raw and preprocessed data to fusion systems for composite processing.  The 

following definitions are included in Waltz and Llinas [Ref. 2].   
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a. Sensors are devices that detect and/or measure physical phenomena.  

Remote Sensing describes a sensor that measures a distinguishing 

phenomenon that was transmitted through a medium, such as with an 

ESM system.  

b. Sources describe the variety of originators of data, such as 

observations, intercepted communications or other data, a priori 

information such as map data (terrain, roads, cities, lakes, rivers, etc.), 

sea lanes, flight routes, etc., and other archived data such as the 

OOB/EOB, the ATO/SPINS/ROE, and intelligence data.   

c. Links are the communications and connectivity from the sensors and 

sources to the data fusion processing nodes.     

 

3.  Detection and Tracking 

 Sensors detect the presence of signals and estimate the parameters of those 

signals.  The signal processing of the sensor data results in a measurement for that current 

sample time [Ref. 1].  Tracking is the result of processing the measurements for the 

purpose of estimating the current state of the target.  The state estimate can consist of the 

target kinematics and attributes.  According to Bar-Shalom [Ref. 1], measurements are 

the observations of the target, and are usually corrupted by noise from the processing 

sensor or the signal transmission medium.  The characteristics of the measurement are 

dependent on the sensor type making the measurement.  For example, a 3-D radar would 

directly measure the range, azimuth, and elevation to the target (relative to the sensor).  A 

2-D radar would measure the range and azimuth to the target.  A passive system such as 
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an ESM system would  measure the direction of arrival (DOA), but could also determine 

many of the signal characteristics (such as signal strength, frequency, and pulse repetition 

frequency).  The noise in the measurements is the result of uncertainty in the process, 

such as detection false alarms, clutter, other targets, and deception/countermeasures [Ref. 

1].  For the purposes of this thesis, track initiation and drop criteria are not addressed.     

 

4.  Data Association   

Any discussion of tracking algorithms would be incomplete without a description 

of data association methods.  While the term ‘tracking’ is used for describing the state 

estimation process, ‘association’ is used to indicate the process of matching the data or 

knowledge/information to the track [Ref. 1].  The data association process answers the 

question, “which set of data belong to which track?”  According to Waltz and Llinus 

[Ref. 2], data association is,  

the process of relating individual sensor measurements (data) to other 
measurements to determine if they have a common source (e.g., target or event).  
Although the measurements may be referenced to different coordinate systems 
with different spatial accuracy’s or resolutions, the association process must relate 
each measurement to a number of possible sets of data, each representing a 
hypothesis to explain the source of the measurement:  (1) The false alarm set, 
indicating that the measurement is unreal and to be ignored, (2) The new target 
set, indicating that the measurement is real and relates to a target for which there 
are no previous measurements, (3) An existing set of previous measurements 
related to a single target.  A set exists for each previously detected target.   

 

By Bar-Shalom [Ref. 1], the three categories of data association are measurement-to-

measurement association, measurement-to-track association, and track-to-track 

association.  Measurement-to-measurement association is used for track initiation.  

Measurement-to-track association is used for maintaining the track, such as predicting the 
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current state of the target based on the likelihood that the measurement is actually from 

the target.  Track-to-track association is used in a multiple sensor environment, when two 

or more sensor systems are reporting well-established tracks.  When measurements (or 

track data) are available from more than one sensor, a process called ‘data registration’ is 

required to align the sampling times of the sensor data before track-to-track association 

can be used to combine the data [Ref. 1].   

 The methods of data association require a likelihood or probability measure to 

evaluate alternatives [Ref. 1].  For example, a measurement could be ‘associated’ with a 

current track, another track within the same detection region (gate), a clutter point, or 

some other anomalous situation.  Since it cannot be known with absolute certainty what 

the measurement is actually associated with, the previous hypotheses or guesses are 

typically evaluated based on the likelihood that they are the correct guess.  Typically, 

target gates are used to eliminate measurements from consideration in the development of 

hypotheses.  Measurements that fall outside of the gated region are not used in the state 

estimation of the target.  Target ‘gates’ are discussed in the next section.  Only the 

measurements that fall within the gate are considered in estimating the state of the target, 

depending on the algorithm used.  Each measurement can be assigned a likelihood or a 

probability that it is the measurement that is most correct for updating the state.   

Numerous statistical approaches exist for assigning likelihoods or probabilities to 

the data association process.  Several of the methods for data association include the 

Maximum Likelihood Estimation, Bayesian Statistics, Evidential Reasoning, Dempster's 

Rule, and Dempster-Shafer Reasoning.   
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5.  Gating 

Gating is used to narrow the search around a predicted target position for the next 

update or measurement.  A three dimensional region  or volume of probability surrounds 

the predicted position of the target.  According to Blackman and Popoli [Ref. 8], gating is 

used to eliminate unlikely observation-to-track pairings.  If an observation falls within the 

gated region, the track can be updated with that observation.  Measurements or 

observations that fall outside the gate are not considered in updating the target state at the 

time of the measurement.  Which returns within the gated region will be used to update 

the track depends on the data association algorithm used.  Data association methods will 

be discussed in the next section.  A gated region can take many different forms including 

rectangular, ellipsoidal, spherical, etc.   

Maneuver gating is also an important consideration, depending on the tracking 

algorithm used.  According to Blackman [Ref. 8], a maneuver gate closely models the 

most severe potential maneuver that a target can perform.  Accordingly, the region can be 

expanded or stretched in any direction depending on the anticipated maneuver.   

Three simple approaches to data association within a tracking gate follow:   

 

  a.  Nearest Neighbor    

The Nearest Neighbor (NN) approach is the simplest measurement-to-

track association method.  With NN, the measurement that is closest to the predicted 

position of the track is used to update the track state, provided that the measurement is 

within the tracking gate [Ref. 1].  
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b.  Global Nearest Neighbor (GNN)      

The global nearest neighbor (GNN) method is a very simple and widely 

applied method for data association [Ref. 8].  Under the GNN method, a hypothesis for 

all the possible associations is made for updating the target state.  Only the most likely 

association is used to update the state and the other possibilities are discarded.  Problems 

occur when more than one measurement occurs in the tracking gate and the formation of 

a solution occurs with an association assignment matrix. 

  

c.  All Neighbors Method    

The All Neighbors approach is used in the Probabilistic Data Association Filter, 

which will be discussed in the section on tracking algorithms.   

   

B.   TRACKING ALGORITHMS 

1.  Batch Processing 

Numerous techniques have been used for this simplest case of tracking a single 

target that is not maneuvering.  The approach is to collect a number of hits on the target 

and batch process the data to produce a track [Ref. 9].  With batch processing, the more 

hits collected, the better the solution.  However, the computational requirements are more 

demanding as the number of hits increases, making batch processing an impractical 

solution for most surveillance systems.  Every time a new measurement is collected, all 

the previous measurements are used to calculate the new state, making batch processing 

very cumbersome.   
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2.  Prediction-Correction Methods 

One of the advantages of prediction-correction, or recursive, methods is that the 

state update depends only on the previous state and the current measurement.  According 

to Hutchins [Ref. 9], the simplest trackers are only designed for straight-line motion 

(SLM), yet target accelerations can be handled by increasing the gain of the filter or by 

increasing the noise term of the state equations.  The more complicated trackers are 

designed to compensate for turning motion, or to handle multiple hypotheses of target 

motion, or to sort through clutter.  Tracker types can be combined to allow multiple 

sensor, multiple target tracking, and data association. 

   

a.  Alpha-Beta Tracker (α-β) 

The Alpha-Beta tracker is the simplest constant-gain tracking algorithm.  

The tracker has poor performance, but requires a very low computational load.  In this 

case, a constant gain matrix is set up for the target position update equation.  The alpha-

beta tracker is used in tracking systems where position measurement updates are 

available and the state vector consists of positions and velocities [Ref. 9].  The value of 

the gain is preset for handling straight-line motion or turning motion.  When the gain is 

set to compensate for turning motion in a target, the straight-line performance will suffer 

somewhat.  This is also true for many of the trackers in the discussions that follow.  An 

extension of the alpha-beta algorithm is the alpha-beta-gamma tracker, which includes 

accelerations in one state vector [Ref. 8].   

  



 

 24

b.  Constant Gain Kalman Filter (CGKF) 

The Constant Gain Kalman Filter (CGKF) is a simplified case of the 

Kalman Filter [Ref. 9].  Instead of updating the covariance matrix at every measurement 

update, the covariance is taken to be constant.  Using the assumption that the covariance 

matrix will approach a steady state value over time, the Algebraic Riccati Equation 

associated with the linear, time-invariant, discrete time system can be solved numerically.  

For this case, the MATLAB function dlqe (discrete-time linear quadratic estimate) can be 

used to determine the values of constant covariance and constant Kalman gain.  Then the 

Kalman update equations depend only on the previous state, the measurement, and the 

constant gain.  Although the CGKF is not an optimum solution, it is not heavily burdened 

computationally. 

   

 c.  Kalman Filter (KF) 

  The Kalman Filter (KF) is the basis upon which many of the more 

advanced algorithms are designed.  The Kalman filter is an optimum solution to the 

sequential least squares problem, meaning that the least square error is minimized.  It is a 

sequential algorithm because it only depends on the most current measurement and state 

estimate, and the associated measurement and state prediction covariance matrices [Ref. 

9].  The Kalman filter is not very computationally demanding, but the filter is not 

designed to handle maneuvering targets, clutter, or multiple targets.  The filter can be 

adapted to handle maneuvering targets, but the solution is no longer optimum.  Examples 

of this phenomenon will be shown in the Results section.  
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d.  Extended Kalman Filter (EKF) 

  The Extended Kalman Filter (EKF) is used in cases where the mapping of 

coordinates is non-linear.  The EKF is most applicable in cases where the measurement 

process is non-linear, or the target dynamics are non-linear [Ref. 8].  According to Bar-

Shalom [Ref. 1], the nonlinear transformation may introduce bias in the solution, the 

covariance calculation is not necessarily accurate, and the EKF can diverge if the initial 

conditions are inaccurate.  The EKF was not examined thoroughly in this thesis.  

  

e.  Interacting Multiple Models (IMM)  

  The Interacting Multiple Models tracker is used to predict the current state 

of the target using two or more different models.  For example, if the target is expected to 

be a maneuvering target, the models used could be a straight-line motion (SLM) model, a 

left turn model, and a right turn model.  Other models used could be a variety of turn rate 

models or climbing/descending models.  The number of models used is dependent on the 

application.  In this thesis, the IMM used is a 2-model IMM, where the two models differ 

only by the noise term (one for SLM, and one for turning motion). 

  For the IMM estimator, multiple state equations are used to describe each 

of the different modes of operation [Ref. 9].  A Markov transition matrix is used to 

specify the probability that the target is in one of the modes of operation.  Usually, these 

values are chosen heuristically.  In the case of the 2-model IMM used in this thesis, the 

chosen probabilities were (1) A 10% probability that the target would turn if in SLM at 

the measurement time, and (2) A 33% probability that the target would return to SLM if 

in a turn at the time of the measurement.  Similar to the “soft-switching” discussed in an 
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Air Force Research Lab report [Ref. 10], the model probabilities are updated at each new 

measurement, and the resulting weighting factors are used in calculating the state.  In 

other words, no gating decision is required for the tracker to function properly. See 

Chapter IV for a more thorough description of the algorithm. 

 

f.  Multiple Hypothesis Tracker (MHT) 

  The MHT is a very complex, yet flexible approach to solving the multiple 

target data association problem [Ref. 9].  Even in a very simple case where one 

measurement can be associated with one track, numerous possible hypotheses exist as to 

the precise nature of the association:  (1) the measurement may be associated with the 

currently held track, (2) the measurement may be associated with a new track, (3) the 

measurement may be associated with no track.  With multiple tracks and multiple 

measurements, the number of hypotheses can grow dramatically.  Each hypothesis 

receives a score, which is dependent on the probability (likelihood function) that the 

hypothesis is correct [Ref. 9].  All the hypotheses can be maintained from scan to scan, or 

the hypotheses can be pruned back to the most likely one or two track solutions.  For this 

reason, an MHT is a very computationally demanding algorithm and it requires a great 

deal of memory.  

  

g.  Probabilistic Data Association Filter (PDAF) 

  The Probabilistic Data Association Filter (PDAF) is used to compensate 

for clutter that is received as possible valid target returns within a gated region around the 

predicted target position. The PDAF is a suboptimal Bayesian algorithm that associates 
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probabilistically (using the likelihood function) all the validated measurements to the 

target of interest [Ref. 1].  For this reason, the PDAF is also known as the “all-neighbors” 

data association approach.  The validated measurements, also known as the neighbors, 

are combined using a weighted likelihood function in the algorithm to account for 

measurement uncertainty.  The state estimate is updated with all the validated 

measurements weighted by their likelihoods of having originated from the target, i.e. the 

combined innovation.  To account for the measurement uncertainty, an additional term is 

added to the covariance update equation.  As opposed to the nearest neighbor approach to 

data association, the PDAF is an ‘all neighbors’ data association approach.  

  

h.  Joint Probabilistic Data Association Filter (JPDAF)  

The Joint Probabilistic Data Association Filter (JPDAF) is an extension of 

the PDAF to include multiple targets in clutter [Ref. 1].  The JPDAF allows overlapping 

validation regions, meaning that more than one target may be present within the gate for 

each update.  This effect causes a persistent interference over several sampling times.  

One of the simplifying assumptions of the JPDA approach is that the number of targets is 

known.   Also, the false measurements are uniformly distributed across the validation 

region, meaning the extra computation time is expended evaluating all measurements as 

if they were valid.    
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C.   ADVANCED TRACKING ALGORITHMS 

1.  General 

 In order to handle multiple sensors and multiple targets that may be maneuvering, 

additional methods are necessary.  These methods improve on the basic characteristics of 

the trackers discussed in the previous section.   

 

 2.  Multiple Targets 

The multiple target tracking problem is discussed extensively in Bar-Shalom [Ref. 

1].  If the number of targets is know, the JPDAF is a well established algorithm for 

tracking the targets.  Since the JPDAF is a Bayesian approach, all the possible targets that 

can be updated by a measurement are considered simultaneously.  Additionally, all the 

validated measurements that fall within the tracking gate are considered in updating the 

track.  However, if the targets are maneuvering, or the number of targets are unknown, 

some other implementation of the filter is required.   

Advanced tracking algorithms are designed to combine the best attributes (or the 

most practical attributes) of the more basic tracking and data association techniques.  For 

example, combining the IMM with the JPDA allows multiple model tracking with the ‘all 

neighbors’ approach to data association.  In fact, many of the algorithms can be 

simplified to allow a sub-optimum solution while preserving the practical aspects of the 

algorithm.  For example, the JPDA could be greatly simplified by forcing nearest 

neighbor data association (NNJPDA).  Combining this new filter with an IMM would 

result in a filter that could track maneuvering targets with nearest neighbor data 

association (IMMw/NNJPDAF).   
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3.  Multiple Sensors 

 In multiple sensor tracking scenarios, the sensors can be of the same type in 

different locations, or of different types in the same or different locations.  A primary 

consideration in the multiple sensor problem is the time at which the measurements are 

collected.  If the sensors are perfectly synchronized in time, measurement-to-

measurement associations can occur, followed by centrally located association and 

tracking [Ref. 1].  A more common approach occurs where each sensor performs the 

measurement-to-track association and tracking, and then track-to-track association and 

fusion occurs between the sensors.   

 When performing track-to-track association and fusion, a test must be performed 

to determine if two tracks belong to the same actual target.  This is done by comparing 

the state estimates of the two tracks [Ref. 1].  To test the hypothesis that two tracks 

belong to the same target, the difference between the state estimates is compared to a 

threshold value.  If the test passes, the fusion of the estimates can be carried out with a 

simple equation that treats the error covariances of the two sensors independently.  The 

resulting state estimate is usually more accurate than the single sensor case.   

 

D.   ATTRIBUTE TRACKING/FUSION 

According to Drummond [Ref. 11], the use of  the term ‘attributes’ to describe all 

the characteristics of a target is too broad due to the way that the data is treated for 

tracking purposes.  By Drummond’s definition,  features, attributes, and categorical 

features, are more descriptive terms.  A feature is a characteristic obtained from a 

continuous sample space to include examples like target size, radar cross section, or other 
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signature data.  An attribute is based on information obtained in a discrete sample space.  

Examples of attributes include target type, radar type, number of engines, or the IFF 

information.  The distinction is made between features and attributes because of the way 

the information is processed.  When Bayesian techniques are used, features are processed 

according to their probability density, and attributes are processed based on their 

associated discrete probabilities.  Categorical features are another type of data that 

include information that is already known, such as the wingspan of potential target types, 

or expected IFF information.  This information can be measured directly, obtained over 

time, or combined in a way that allows a comparison to known characteristics of targets, 

thereby allowing classification into a finite set of categories.    

The feature and attribute data is most commonly used for target classification and 

identification, or for Combat Identification (CID). This is an important concept in Level 1 

Sensor Fusion, the detection and estimation of track attributes.  However, a distinction is 

made between these inherent features or qualities of a target and the behavior of the 

target [Ref. 8].  The perceived target behaviors or intentions are the result of higher level 

sensor fusion, namely the situation assessment (Level 2).  According to Blackman [Ref. 

8] and Drummond [Ref. 11], the features and attributes of a target can be detected, passed 

through a thresholding process, estimated, and tracked, similar to tracking based on target 

kinematics.    
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E.   SENSOR FUSION 

The sensor fusion problem is a culmination of all the aforementioned tasks 

associated with sensor/multiple sensor tracking, attribute tracking, and track-to-track data 

association.  One of the key features of a sensor or data fusion system or algorithm is the 

necessity to perform data registration.  Also, in order to share the information generated 

in a multiple sensor environment, a robust communications system must be in place to 

allow timely and accurate sharing of track information.   

The sensor registration problem necessitates a correction in track databases due to 

systems that are not synchronized in time, and corrections due to common reference 

frame differences (such as gridlock problems).  Also, according to Blackman [Ref. 8], 

many other sources of registration error can contribute to misalignment in track 

information.   

1. Coordinate system errors:  misalignment of coordinate axes in the 

measurement systems. 

2. Bias error:  errors due to range and bearing bias error.   

3. Location error:  errors due to variation in navigation solutions.  

4. Other error sources:  radar refraction/ducting errors, bias errors from 

polar-to-Cartesian coordinates. 

Finally, the architecture of sensor fusion systems are addressed in numerous 

publications including [Ref. 12], and are not thoroughly discussed in this paper.  Whether 

a fusion system will process data in a centrally located database management system or 
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be distributed to the sensor platforms is an important consideration.  In the case of a 

distributed system, the platform that has the most correct solution about the position, 

identification, and intentions of a contact may not be readily known.  Indeed, the 

confidence in the data needs to be addressed for both types of system architectures.   

The information received may be vital to the mission.  A Battle Group 

Commander may want to maximize the situational awareness of his platforms via a 

common operational picture.  An aircraft responding to a time-critical strike request will 

need maximum information about target location and movement, target type or 

identification, and possible threats to his platform.  
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IV. FUSION SIMULATOR 
 

A.   FUSIM OBJECTIVE 

The objective of the fusim program is to provide acquisition managers a tool for 

evaluating tracking and sensor fusion algorithms.  Also, this first edition of the program 

provided a basis of study for this Thesis.  The fusion simulator was written in MATLAB 

6.0 for the following reasons:  (1) The MATLAB software is widely accessible and runs 

on any personal computer.  (2) MATLAB is compatible with other languages including 

C++ and Java.  (3) MATLAB is highly flexible and optimized for vector/matrix 

operations.  (4) MATLAB can be programmed to utilize multi-dimensional arrays. (5) 

MATLAB can be used in an object-oriented programming environment.   

The fusion simulator (FUSIM) was written from the perspective of the sensor 

platform and the operator.  Any type of platform can be selected for the sensor platform, 

either airborne or surface, maneuvering or non-maneuvering, or a fixed site.  FUSIM is 

very flexible for selection of targets.  The user can select any number of high-speed/low-

speed/fixed maneuvering or non-maneuvering targets for maximum flexibility in a 2-

dimensional simulation environment. Also, the user can select up to 4 different sensors 

for the sensor platform.  For output, the user can select a real-time output plot (PPI) or the 

PPI and the sensor/target/tracker Least Square Error plots.   
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B.   FUSIM DESCRIPTION 

The fusim program was written to give a user flexibility in selecting sensor 

platforms, up to four sensors associated with that platform, the target types, the problem 

orientation, and the tracking algorithms to be used with the sensors.  Table 1 is a list of 

potential fusim configurations that a user could select.   

 
Maneuvering Moving – Maneuvering 

Non-Maneuvering Moving – Non-Maneuvering 

Sensor 
Platforms 

Airborne 

 

Fixed (like an aerostat radar) 

Surface 

Fixed Site 

Airborne 
Surveillance 
Radar 

Airborne 
Fighter 
Radar 

Non-
Cooperative 
Target Radar 

IFF Interrogate Airborne ESM 
error model 

Infrared Search 
and Track error 
Model 

Potential 
Sensors  

Surface 
Surveillance 
Radar 

Surface 
Fire 
Control 
Radar 

Eastern IFF IFF Reply Surface ESM 
error model 

Ownship 
Navigation 
model 

Maneuvering Moving – Maneuvering 

Non-Maneuvering Moving – Non-Maneuvering 

Target 
Types 

Airborne 

Fixed 

Surface 

Fixed Site 

Tracking 
Algorithms 

Probabilistic Data 
Association Filter 
(PDAF) 

Interacting Multiple 
Models (2-model) Filter 
(IMM) 

Kalman Filter (KF) Constant Gain Kalman 
Filter (CGKF) 

Table 1.  List of Potential Configurations for the fusim Program. 

 

Within the fusim program, the FUSIM file is the main control file for the entire 

simulation.  FUSIM calls the various associated functions to set up the needed matrices 

and variables, creates the truth data for the targets, adds the measurement error, sends the 

noisy measurements to the trackers, and then stores and plots the target states and 

associated least square errors.  The FUSIM function is called from the MATLAB 

command line.  A complete description of the fusim program and the related functions is 
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included in Appendix A.  The MATLAB code for all the functions is included in 

Appendix B.   

 

C.    THE MATHEMATICS OF FUSIM   

The fusim program runs on a few simple concepts of modeling and simulation.  

For example, the program utilizes synchronous timing for the sensors associated with the 

sensor platform, making  the data association problem a little easier to deal with.  This 

section deals with the mathematics of the fusim program, describing the construction of 

the various matrices and vectors, and describing their interactions at specific points in the 

program.     

 

1.  Startup 

Fusim begins with the START function for initializing a variety of variables 

including the Extraction Matrix (H) and the Discrete Time State Equation Transition 

Matrix (F).  Also, all the target matrices are initialized and the simulation timing is 

determined.   

Extraction Matrix (H) 

The Extraction Matrix simply extracts the x,y components from the 4 x 1 state vector.  As 

used in this program, H is a 2x4.   
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
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−
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Total Simulation Time (t) 

The total simulation time in minutes is input by the user via the START.MAT file.  After 

reading in the value, the simulation time is converted to seconds.   

[ ]41,/,,,, −= ctionfilterseleANDLRPdeltatimenloopstimesimulationsimstart  

60*timesimulationt =  

 

Simulation Time (simt) 

The cumulative simulation time is stored in the (simt) variable.  The value of (simt) starts 

at zero and runs up to the total number of seconds in the simulation.   

 

Number of Simulation Loops (nloops) 

The value of (nloops) is usually 1 for a simulation with a real-time output.  For multiple 

runs, a value of 20 provides a good indication of performance.  For sufficient averaging 

of the Monte Carlo runs, a value of 100 or 200 is required.  However, the computation 

time is dramatically increased.   

 

Sampling Time (delta) 

The sampling time is used to determine the time step and the total number of 

measurements based on the simulation time.   

60*deltatimedelta =  
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Number of Time Steps (nsamples) 

The number of time steps is determined using the value of delta and the total simulation 

time.  This value is used by the main program loop for the total number of measurements. 

)/( deltatroundnsamples =  

 

Transition Matrix (F) 

The Transition Matrix is used to iterate target motion through time based on the time 

delta.  The F-matrix is multiplied by the applicable state matrix or truth state to determine 

the next target position [Ref. 9].  












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





=

1000
100

0010
001

delta

delta

F  

  

Target Matrices (A) and (A1) 

The Target Matrices result from reading the TARDAT.MAT file and separating the 

targets into maneuvering (A) and non-maneuvering (A1)  targets.  This separation is 

accomplished by performing a simple test:  If the turn time in the last position of each 

target vector is a zero, the target is non-maneuvering regardless of the leg time input.  

The sensor platform and all targets (maneuvering and non-maneuvering) have the same 

format.  The targets have emitters instead of sensors.  For all non-maneuvering targets, 

the (F) matrix is used to transition the state vector.  For all maneuvering targets, the 

(Fturn) transition matrix is used while the target is maneuvering.  
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[ nametypealtitudespeedheadingposxWEposySNA ,,,,,,/,,/ −−=  

 ]turntimeRturnsLlegtimecommsensorsensorsensorsensor ,/,,#,4,3,2,1  

Example:   



















=

2.081111111500010033040000002000000
5.07108651112000040024020000005000000
45.19108651112500035017030000004000000
43.11001197111250001752700000

A

 
















=

000000000000010000007000000
0000000000012355600000600000
00811111113000050007050000002500000

1A  

 

Sensor Platform Position (Sp) and (Spi) 

The sensor platform position is initialized with (Spi) by extracting the x-y position, the 

heading and the velocity from the first target in the TARDAT.MAT file.  The sensor 

platform is always the first row vector of the TARDAT.MAT file.  The sensor position 

used in all calculations of target motion is based on the navigation solution of the sensor 

platform (Sp).  The sensor platform is sometimes referred to as Ownship.   

 

Ownship Sensors (ownsens) 

The sensors associated with the sensor platform (ownship) are determined based on user 

preference in the TARDAT.MAT file.  Vector positions 10 – 13 contain the preferences 

for sensors as defined in the SENSERROR function.   

[ ]11971=ownsens     (See Appendix A for a complete description of the sensors) 
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Maneuvering Target Transition Matrix (Fturn) and (ownfturn) 

The (Fturn) matrix is used to iterate target motion through time whenever the target or 

sensor platform is in a maneuvering condition.  The matrix is set up by the FTURN 

function, which determines if the target is turning left or right and assigns the turn g’s.  

The (Fturn) matrix is based on each target’s heading, speed, and turn g values.  For this 

simulation, the (Fturn) matrices are stacked for each target resulting in a 4*(# targets) x 4 

matrix.  The (Fturn) matrix is used only for generation of truth data.   

 ϖ = 
v
a

(turn rate in radians/sec); delta=∆  

fturn  =  L-1{(sI – A)}=  eA∆ =  


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

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
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
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
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∆∆−
∆−∆

∆−∆

)cos(0)sin(0

)sin(1)cos(10

)sin(0)cos(0

)cos(10)sin(1

ϖϖ
ϖ
ϖ

ϖ
ϖ

ϖϖ
ϖ

ϖ
ϖ
ϖ

  

where A is the System Matrix [Ref. 1, 9]. 

 

Sensor Numbers (nsens) 

The (nsens) vector holds the values corresponding to the desired sensors of the sensor 

platform.  The variable (ns) holds the total number of sensors associated with the sensor 

platform.  The number of sensors can vary from 1 to 4.  When more than one sensor is 

associated with the sensor platform, many of the vectors and matrices in the simulation 

are given a third dimension to allow analysis of the additional sensors.   

[ ]971=nsens     (See Appendix A for a complete description of the sensors) 

ns = 3 (in this case) 
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Tracker (trkr) 

The (trkr) vector is returned from the SETUPTRACKERS function containing the tracker 

that corresponds to each sensor.  If the primary tracker is set to 1 by the user, the 

sensor1/tracker1 pair is set to 1.  The 1 corresponds to the Probabilistic Data Association 

Filter.  Subsequent pairs are automatically set by the SETUPTRACKERS function.   

trkr = [sensor1/tracker1 pair, sensor2/tracker2 pair, sensor3/tracker3 pair,...] 

[ ]1432=trkr ;   

In this case, sensor 1 corresponds to tracker 2 (IMM), sensor 2 corresponds to 

tracker 3 (Kalman), sensor 3 corresponds to tracker 4 (Const Gain Kalman), and sensor 4 

corresponds to tracker 1 (PDA).   

 

2.  Initialization 
 

Initial x (xin) and (xim) 

The x vectors (xin) and (xim) are based on the initial values input by the user as the initial 

position, velocity and heading of the target.  To keep them separate, xin contains the 

initial values for the non-maneuvering targets, and xim contains the maneuvering target 

data.  The vectors contain the initial true states stacked for each target.  The x2n and x2m 

vectors are simply the next truth data point generated by the TIMESTEP function.  The 

TIMESTEP function simply multiplies the (F) matrix by the 4 x 1 truth state vector.   
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xin = 



















vy
y

vx
x

 ;       xim = 



















vy
y

vx
x

 ;      x2n = F*xin = 



















2
2
2
2

vy
y

vx
x

 

Maneuver Time Matrix (mantime) 

The Maneuver Time Matrix (mantime) is set up by the MANMATRIX function and 

contains a column vector of times for each maneuvering target.  The vector times are 

based on the leg times and turn times as defined by the user in the TARDAT.MAT file.  

For each target, the column vector holds the cumulative leg time and turn times.  During 

matrix construction, if the maximum time is greater than the total simulation time, the last 

element is set to the maximum time.  The size of the matrix is kept consistent by filling in 

the shorter vectors with zeros. 











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





=

09000000
900750900900900900
700450540500750580
600300480400600480

mantime   

 

Initial State Estimation (xhat1) 

The initial state estimation for each target is determined by the INIT function and 

returned with the applicable sensor covariance (R) and prediction covariance (P).  Also, 

the measurement error (derror) is returned for plotting and comparison purposes.  The 
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additive plant noise term, Q is also returned.  The INIT function is called for each sensor. 
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The function POLE2CART is called within INIT for each target to obtain the 

noisy measurement (zcart), the sensor covariance (R), and the measurement distance 

error (disterror).  Using the second set of truth data, the POLE2CART function is called 

again for use in Lease Squares Initialization.  To simplify initialization requirements, the 

least squares initialization is used for all trackers in the simulation, regardless of tracker 

type. The INIT function simply calls POLE2CART for each target using the appropriate 

truth position (xin/m), sensor error values (sigr, sigb, Sv) and sensor position (Sp).   

Within POLE2CART, the sensor position (sp) is subtracted from the target true x-y 

(ztrue).  Next, the actual range and bearing (r,b) are calculated to the target and the 

measurement noise is added.  The values are converted back to Cartesian coordinates and 

the sensor position is added back in to get the plotted position of the target.  Finally, the 

measurement covariance in Cartesian coordinates is calculated and the distance error is 

calculated for determining the  measurement error.     

spztruez −= ;  22 )2()1( zzr +=  









= −

)1(
)2(tan 1

z
zb  
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r = r + sigr*randn           

b = b + sigb*randn 

sp
br
br

z +







=

)sin(
)cos(

; 






 −
=

)cos()sin(
)sin()cos(

brb
brb

fx  

R = fx*Sv*fx’;   ztilde = ztrue – z 

ztildeeztilddisterror *′=  

Slight biases are introduced with this type of measurement processing [Ref. 1].  

These errors are ignored in this simulation.  Once 2 noisy measurements are obtained, the 

Kalman initialization can commence to create xhat and the covariance term: 
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= −− HFQFHRzeros
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*)(***1)2,2(
)2,2(2

cov 11  

P = D*cov*D’ 

xhat =D*yflipped  

 

Sensor Platform Initial State (Spst) 

The initial state of the sensor platform is determined with the SPINIT function similar to 

the initializations of the targets.  The sensor position state is determined using the same 

methodology as xhat for the targets.   
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3.  Truth Data 
 

Non-Maneuvering Target Time Step 

If the target is not maneuvering at any time during the simulation, generation of the truth 

data is a simple step:   

xnew = F*xold 

 

Maneuvering Target Time Step 

For maneuvering targets, the truth data generation is a little more complicated.  First, a 

test must be applied to see if each target is in a maneuver condition.  This is where the 

previously described (mantime) matrix is used.  If the target is in a maneuver state at the 

current simulation time: 

 


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
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



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
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=

09000000
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700450540500750580
600300480400600480

mantime   

xnew = fturn*xold 

When not in a turning condition, the previous expression is used for straight line motion.   

 

Sensor Platform Time Step 

The Sensor Platform is treated separately from the targets.  To generate the truth data, the 

previous truth data is sent to the SPITMEAS function along with maneuver times and the 

ownship turning motion matrix (ownfturn).   

Target 5 

Turning 
Condition 

simt = 400 
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spxtrue = F*spx2;   or,  spxtrue = ownfturn*spx2 (if maneuvering) 

 

4.  Measurement  
 

Once all the truth data is generated, the measurement phase can commence.  The 

truth data is sent to the POLE2CART function for each sensor and for each target to 

create the noisy measurements.  The POLE2CART function calculates the measurements 

exactly the same as the measurements in the initialization section.   

 

Measurement Truth Data (zre) 

The measurement truth data is simply the ztrue vector reshaped into a stack of x-y row 

vectors.  This reshaping is done to make the data more convenient to use with 

POLE2CART. 
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Sensor Platform Position Update (Sp) 

One of the key elements in the POLE2CART function is the sensor platform position 

because all errors are measured with respect to the position of the sensor.  To simulate the 

sensor platform navigation solution, the truth data is treated the same as the targets.  First, 

the truth data is sent to POLE2CART with some r, θ errors to create the measurement 
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noise (in the SPITMEAS function).  This simulates errors in the platform’s GPS/Inertial 

navigation system.  Next, the noisy measurement is sent to a Kalman Filter tracking 

function to create the navigation state update.   

 

Sensor Position State (spstate) 

The sensor position state is updated by calling the KALMAN1 function with the previous 

state (Spst), the prediction covariance (spP), the measurement covariance (spR), the noise 

term (spQ), and the current noisy measurement (spmeas).  The state prediction and 

update equations follow:   

Kalman Prediction: 

Pnext = F*spP*F’ + spQ 

xnext = F*xprevious 

Kalman Update: 

 K = spP*H’*(H*spP*H’ + spR)-1 

 spP = (I – K*H)*Pnext*(I-K*H)’ + K*spR*K’ 

 spstate = xnext + K*(spmeas – H*xnext) 

Sp = H*spstate 

 The (Sp) variable is the estimated x-y position as extracted from the state vector.   

 

Noisy Target Measurements (Z1) 

For each sensor (with associated errors), a call to the MEAS function results in a vector 

of noisy measurements for each target.  The MEAS function simply calls POLE2CART 

for each target using the appropriate truth position (zre), sensor error values (sigr, sigb, 
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Sv) and sensor position (Sp).   Within POLE2CART, the sensor position is subtracted 

from the target true x-y (ztrue).  Next, the actual range and bearing (r,b) are calculated to 

the target and the measurement noise is added.  The values are converted back to 

Cartesian coordinates and the sensor position is added back in to get the plotted position 

of the target.  Finally, the measurement covariance in Cartesian coordinates is calculated 

and the distance error is calculated for determining the measurement error.     

For each target, the measurements, measurement covariance, and distance errors 

are stored (zret, R, derror) and returned to the for further storage and manipulation.   
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5.  Tracking 
 

The next step in the program is the tracking section.  Four different trackers are 

included in the current configuration of the fusim program.  A complete listing of the 

MATLAB code for all the algorithms is contained in Appendix B.  The TRACKER 

function is called for each sensor with the (trkr) vector for determining which tracker is 

associated with which sensor.  The TRACKER function makes the call to the appropriate 
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tracking function.  The tracking algorithms used in fusim are listed in order of precedence 

starting with the Probabalistic Data Association Filter.   

  

Probabilistic Data Association Filter (PDAF) 

The PDAF [b-s] is the only tracking code included with fusim that allows analysis of 

targets moving in clutter.  This implementation of the PDAF is not designed for use with 

multiple targets or maneuvering targets.  However, increasing the additive noise term 

(Qp) allows sufficient tracking through turns for this analysis.  

Initially, the probability of detection (Pd) and the gate density probability (Pg) are 

set.  The gate probability is usually around 1 [Ref. 1].  The number of targets and clutter 

points (m) are also predetermined.  For this PDAF, one target is always assumed to be 

present.  Another simplification for this filter is the calculation of the tracking gate.  For 

each clutter point within the gate, a simple call to POLE2CART is used to generate the 

point.  This assures that the clutter point always falls within the gate.  These values do not 

change in this adaptation of the Probabilistic Data Association Filter. 

Pd = 1.0;  Pg = .99;   m = 2 

For the gate calculation: 

feetrange 900=σ  

deg2=bearingσ   
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qsquared = 1000 

Qp = qsquared*Q 
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The weighted predictions: 

xFx ˆˆ1 =  

QpFFPpPnext +′=  

For calculation of the gate volume factor, the semi-major and semi-minor axis in feet: 

        minor axis, a = 600; 

        major axis, b = 1500; 

abVk π2=       

Vk
m=λ  

PHPnexteS ′=Pr  

Calculate the innovation covariance (Sk) for the actual target, based on the measurement: 

ReSSk += Pr  

1−′= SkHPnextK         Gain 
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 −
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PdPgSkb 12 2

1

πλ  

sum = b 

1x̂Hzret −=ν  


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



 ′ −

=
νν 1

2
1

1
Sk

ee  

1esumsum +=  

For each clutter point, the POLE2CART function is called to create the noisy 

measurements and the association probabilities (β) are calculated.   

1̂xHzretj −=ν  
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

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j ee
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jesumsum +=  

sum
ej

j =β  

Then, for the combined innovation calculation: 

∑ =
= m

i iik 1
νβν  

For determining the spread of the innovations term, the calculations are broken down as 

follows: 

For each clutter point (and target), 

kkiiispread ννννβ ′−′=∑  

( )KspreadKP ′=~  

KKSkPnextPc ′−=  

sum
b=0β  

( ) PPcPnextPp ~1 00 +−+= ββ  

Final state estimation:   

kKxx ν+= 1̂ˆ  

 

 

Interacting Multiple Models 

The 2-model Interacting Multiple Models filter allows tracking of a maneuvering target  

based on a straight line motion model and a turning model.  Initially, the probability of 
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conducting a turn if in straight line motion (alpha) and the probability of stopping a turn 

(beta) are set.  This allows setting up the Markov 2 x 2 ρ matrix.   
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In this tracker, α = 0.1 and β = 0.33333.  These values can be changed for user 

preference.   

Initial State Likelihood:  (straight line track) 
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=

0
1

µ ;  Initially, µ1 = 1.0, indicating the target is assumed to be in straight line motion 

(SLM).  The state likelihoods are recalculated each time the tracker is called for a new 

update.   

Set the noise terms for the two different models: 

Qi = 1.0*Q; 

Qturn = 10000*Q; 

Pre-process the cbars and mu's: 

221111

_

1 µρµρ +=c  

222112

_

2 µρµρ +=c  

 The initial xhat guesses are based on the probabilities that the target will continue 

straight line if in SLM, turn if SLM, continue turning if in turning motion, or return to 

SLM if turning:   
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

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


+
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



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xxz

µρµρ  

1

111
11 c

µρµ = ;  
1

221
21 c

µρµ =  

2

112
12 c

µρµ = ;  
2

222
22 c

µρµ =     

1111 ˆˆ~
zxxx −=  ;  1221 ˆˆ~

zxxx −=  

2112 ˆˆ~
zxxx −=  ; 2222 ˆˆ~

zxxx −=  

( ) ( )21212111111101
~~~~ xxPturnxxPP ′++′+= µµ ;    ( ) ( )22222212121202

~~~~ xxPturnxxPP ′++′+= µµ  

Next, the weighted predictions are performed: 

11 ˆˆ zxFx = ;       22 ˆˆ zxFx =    

QiFFPP +′= 011  

QturnFFPP +′= 022  

Before proceeding to the next step, the straight line Kalman gain, turning gain, and 

covariances are determined separately: 

( ) 1
11

−+′′= RHHPHPK  

( ) 1
22

−+′′= RHHPHPKturn  

( ) ( ) KKRKHIPKHIPi ′+′−−= 1        

( ) ( ) nKturnRKturKturnHIPKturnHIPturn ′+′−−= 2  

RHHPS +′= 11  

RHHPS +′= 22  
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The measurement update step is conducted by calculating the state estimate for straight 

line and turning, and then combining the results for plotting: 

Straight line 

11 ˆ~ xHzretz −=   

11
~ˆˆ zKxxslm +=  

Turning 

22 ˆ~ xHzretz −=  

22
~ˆˆ zKturnxxturn +=  

 

Combining the result for plotting and error analysis, the state estimate: 

turnslm xxx ˆˆˆ 21 µµ +=  

  

Score the results (simplified with only two models):  

2
1

2

~1~

1

12

1
1

1

S

e
zSz

π
λ




















 ′
−

−

= ;  
2
1

2

~2~

2

22

2
1

2

S

e
zSz

π
λ




















 ′
−

−

=  

 

2211 ccc λλ +=  

c
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1
λµ = ;  

c
c22

2
λµ = ;  




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


=

2

1
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µ    

For the next prediction/update: 

slmxx ˆˆ1 =  ;  turnxx ˆˆ2 =  
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Kalman Filter 

The Kalman filter used for tracking the targets is exactly the same code as the equations 

used in the sensor platform navigation solution.   

Kalman Prediction: 

Pnext = F*spP*F’ + spQ 

xnext = F*xprevious 

Kalman Update: 

 K = spP*H’*(H*spP*H’ + spR)-1 

 spP = (I – K*H)*Pnext*(I-K*H)’ + K*spR*K’ 

 spstate = xnext + K*(spmeas – H*xnext) 

Sp = H*spstate 

 

Constant Gain Kalman Filter 

The constant gain Kalman filter is the simplest case included in the fusim program.   

qsquared = 1000.0; 

Q = qsquared*Q; 

First, the constant Kalman gain is determined using the MATLAB function DLQE  for 

each target being tracked. This value of K  is used for all subsequent state calculations.  

xFx pred ˆˆ =  

( )predpred xHzretKxx ˆˆˆ −+=  
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6.  Data Link Simulation 
 

For the data link simulation, bias error and noise errors are added to the state of 

the primary sensor on the sensor platform.  The errors are added to simulate reference 

frame differences, noise in another platform, and transmission errors.  The link report is 

then formatted to allow many different types of data to be sent as part of the report, 

including attribute data, and the time of the report.  For each target: 

x = x + randn*50 + 100  feet 

y = y + randn*50 + 100  feet 

vx = vx + randn*10  feet/sec 

vy = vy + randn*10  feet/sec 

linkvector = [x,vx,y,vy,hdg,time,......] 

 The link reports are meant to be used in a track-to-track data association 

algorithm, which is not available in this first edition of fusim.  The x and y data are the 

only data used in this simulation for plotting purposes.   

 

7.  Storage and Plotting 
 

For every instance of target motion, the truth data (posout), “measured” position 

(zout), tracker state (state), and least square error (Lserror) are stored in a matrix.  The 

same data is collected for the sensor platform.  After each Monte Carlo run, the current 

data are added to the previous cumulative data for eventual averaging over the number of 

runs.  Three different plotting functions are provided for plotting the real-time results or 

for plotting the tracks and the errors for each target and sensor.   
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D.   EVALUATION PARAMETERS   

1.  The Baseline Target Set 

The target set used for all simulations are presented in Table 2.  This setup was 

designed to be flexible enough to add or remove maneuvering or non-maneuvering 

targets via the TARDAT.MAT file.  The format of the TARDAT.MAT file must be 

followed precisely, with zeros entered where no data is desired.   

 
Track Initial Position 

(x,y) 
Initial 
Course 

(degrees) 

Initial 
Speed 
(knots) 

Maneuvering? 
(Y/N) 

Notes 

Ownship 0000/0000 270 175 Y Airborne surveillance platform 
 

Target 1 400000/300000 170 350 Y Maneuvering Fighter Aircraft 
 

Target 2 500000/200000 240 400 Y Maneuvering Fighter Aircraft 
 

Target 3 200000/400000 330 100 Y Slow-Moving Air Track 
 

Target 4 250000/500000 070 500 N Air Liner, Non-Maneuvering 
 

Target 5 60000/60000 355 12 N Ship 
 

Target 6 700000/100000 0 0 N Fixed Target/Emitter 
 

Table 2.  The target set used for all simulations. 
 

2.  Simulation Set 

For this initial edition of fusim, several different sets of runs were performed to 

examine the validity of the code, to check the simulation in a multiple sensor/multiple 

target scenario, and to observe algorithm behaviors in a simple combined solution.  The 

three major tests are described as follows: 

Test 1:  Track algorithm validity – The validity of the simulation was checked by 

running single sensor/multiple track test sets and comparing the mean measurement noise 

to the tracking solution for each track.  Initially, zero error was input to check for 
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problems in the code.  For the next set of runs, the noise term (q2) was adjusted in two of 

the trackers to compare straight line motion (SLM) and maneuvering target tracking 

characteristics.  Finally, the track solutions were compared by running three different sets 

of runs using a single sensor with all four trackers.  Table 3 shows a breakdown of the 

tests and the test subsets. 

Test 2:  Multiple Sensor/Multiple Target Tracking – Test 2 was run to examine 

the use of multiple sensors and tracker types in a multiple target tracking scenario.  

Representative plots were produced to show the differences in mean measurement noise 

and tracking solutions when using four different sensors and four different tracking 

algorithms.  This test was simply a demonstration of the multiple sensor/multiple target 

case and a precursor to the next test.   

Test 3:  Simple Combined Solution – A third group of test sets were run to 

demonstrate a simple combined tracking solution using the multiple sensor/multiple 

target tracking results of Test 2.  The combined state result for each track was simply a 

weighted average of each of the individual tracker states.  The weights were selected 

empirically based on the tracker performance results observed in Test 1.   

The combined state estimate was based on the following weights (percentages) 

for each of the sensors:   

s1: Sensor 1 = 0.3   (Surveillance Radar) 

s2: Sensor 2 = 0.4   (IFF System) 

s3: Sensor3 = 0.1   (ESM System) 

s4: Sensor 4 = 0.2  (IRST System) 

Then, for the combined state estimate: 

xhat = s1*xhat(sensor1) + s2*xhat(sensor2) + s3*xhat(sensor3) + s4*xhat(sensor4). 
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For all of the tests, the runs were conducted with the same target set and target 

initial parameters (Table 2).  Table 3 is a description of the evaluation sets.  The sensor 

descriptions and associated errors are included in Table 4.   

 

TEST NAME TEST SUBSET 

Test 1 Track Algorithm 
Validity 

Set (a)  Zero sensor error 

Set (b)  Analyze algorithm noise terms 

Set (c)  Airborne surveillance radar 

Set (d)  Surface fire control radar 

Set (e)  Infrared search and track system simulator 

Test 2 Multiple Sensor 
Multiple Track 

Set (a)  Four different sensors and trackers 

 

Test 3 Observations on 
Algorithm 
Behavior in a 
Simple Combined 
Solution 

Set (a)   Single sensor type/combined solution with four 
tracking solutions 

Set (b)  Four sensors/combined solution 

Set (c)  Four sensors/combined solution, modified noise 
terms for turn performance 

Table 3.  Fusim Evaluation Set. 
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Sensor Range 
Error 

Bearing 
Error 

Notes 

Airborne Surveillance 
Radar 

100 ft .005 rad Simplified model of an airborne 2D 
radar.   

IFF Detection System 50 ft 

 

.001 rad Simple interrogation and reply 
range and bearing only. 

ESM System  500 ft 

 

.01 rad A simplified model of an ESM 
system. 

IR Search and Track 6000 ft 

 

.0001 rad A simplified model of an IRST 
system.   

Surface Fire Control 
Radar 

10 ft .0001 rad A simplified model of a Fire 
Control Radar system. 

Table 4.  Test Sensor Descriptions. 

 

3.   Test Set-up Parameters 
 

(a)  15 minute simulation time. 

(b)  100 runs (Monte Carlo Simulations). 

 

Unless otherwise noted, the simulation parameters of Tables 2-4 are used throughout the 

simulation.   
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V.  SIMULATION RESULTS 
 

The plan position indicator display of the tracking results of Table 2 is included in 

Figure 2.  This is a representative plot showing the location of the targets and the sensor 

platform.  The same figure was produced for every test case that was run, but was not 

included as a figure for every case.  Unless otherwise noted, the targets referred to in the 

rest of this section are the targets indicated in Figure 2.   

 

     

Figure 2.  Plan Position Indicator (PPI) of Simulation Results. 
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A.   TEST 1: TRACK ALGORITHM VALIDITY 

Track Algorithm Validity Set (a) Results 

To prove that the simulation was working for generation of truth data, 

measurement data and tracking data, the code was initially run with zero error input for 

the range and bearing errors.  The sensor platform had zero error, the sensors each had 

zero error, and the tracker was allowed to produce a track and determine the Least Square 

Error compared to the truth data.  With zero error in the sensor, several runs were 

conducted to demonstrate stability in the tracking codes.  Under ideal conditions, with no 

error in the sensors, the track produced had zero error for straight line motion (Figure 3).  

Errors greater than zero were noted for maneuvering targets, but only in the turn.  As 

expected, the errors quickly returned to zero upon completion of the turn.  

Track Algorithm Validity Set (b) Results  

For the next set of runs, the errors were reinstated and the noise terms in each of 

the trackers were adjusted to observe the differences in the tracking solution.  For the 

PDAF, one clutter point was used in the algorithm.  The number of clutter points was 

fixed at one to simplify the code and force the tracker to deal with a clutter point at every 

iteration.  This would not be the case in an actual PDAF, where normally a test is 

performed at every measurement update to see if a clutter return originates from within 

the tracking gate.  For the IMM, the straight line motion (SLM) model and turn model 

noise terms were adjusted to find a solution that performed well in the turn.  The Kalman 

Filter (KF) and the Constant Gain Kalman Filter (CGKF) were not evaluated during this 

portion of the test.   
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Test 1:  Set (a) Tracking Algorithm Validity 

Description: Determine if the tracking algorithms are valid with zero tracking error 

 

Sensor Airborne Surveillance 
Radar 

Identification Friend or 
Foe System 

Electronic Surveillance 
System 

Infrared Search 
and Track 

System 

Tracker PDAF IMM Kalman Filter CGKF 

 Settings: - q2 = 1000.0 

- 1 clutter pt 

- SLM q2 = 1.0 

- Turn q2 = 10000.0 

-  q2 = 1000.0 - q2 = 1000.0 

Targets Maneuvering Aircraft Non-Maneuvering Aircraft Slow-Moving Ship Fixed Site 

Note:  The test conditions are highlighted in each figure test table.   

 

 

Figure 3.  Tracking Solutions with no Measurement Errors. 
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The airborne surveillance radar was used to check the validity of the PDAF.  The 

PDAF was isolated as a tracker, the noise term was adjusted to intentionally force the 

tracker to miss the turn, and the results were plotted to demonstrate the subtle weakness 

of the PDAF.  The PDAF worked well for tracks in straight-line motion with q2 = 1.0, but 

lost the track in the turn (Figures 4 and 5).  Instead of updating the track state with the 

measurement, the track state was updated with  a more heavily weighted clutter point.  At 

q2 = 100 (Figure 6), the PDAF was able to maintain a reasonable track through the turn 

for this set of runs.  However, for higher accelerations or turn rates, this PDAF setup 

could not be expected to maintain the track.  In fact, the model runs a rather low turn 

acceleration (1.5g) that does not represent a worst-case scenario.  For this simple 

implementation of the PDAF, it is always possible for the track to get pulled off by the 

clutter point, mainly because of the previous assumption:  The clutter point always falls 

within the tracking gate (recall that the tracking gate is centered around the predicted 

position of the target).   

The mean measurement noise appears to be dropping off rapidly in each of the 

figures.  This is due to the change in geometry from the moving target and sensor 

platform.  At q2 = 250 (Figure 7), the PDAF tracked fine through the turn, but the mean 

measurement error was about 400 feet higher for the same target.  These adjustments for 

the noise term are the same as the noise adjustments in the Kalman filter.  For the next set 

of runs, the noise term was adjusted to allow the PDAF to track through turns in search of 

an optimum solution.  At q2 = 250, the average track error was up around 700 feet for 

SLM, but down around 300 feet with q2 = 1.  To ensure a constant turn performance 
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throughout the rest of the tests, the PDAF was run with a noise term of q2 = 1000 (unless 

otherwise noted).   

For the IMM, the two models were varied by simply altering the noise term in 

each model.  For the straight line motion model, the noise term was very small to take 

advantage of the SLM performance of the Kalman filter.  The Markov probabilities were 

0.1 for the turn probability, and 0.33 for the stop turn probability.  Changing these 

probabilities do affect the performance of the filter, but this aspect of the IMM was not 

rigorously examined in this thesis.  The IMM was run for several different cases with 

varying values of the noise term.  For the turn model, the noise term was gradually 

increased until the filter performed consistently well against a maneuvering target.  Only 

two of the cases are displayed in Figures 8 and 9.  Reasonable performance was obtained 

in the turn with the SLM and turn q2 = 1 and 10000 respectively.   

The noise terms in the Constant Gain Kalman Filter (CGKF) and the Kalman 

Filter (KF) were not evaluated for the purpose of this Thesis due to proven performance 

in other exercises [Ref. 9].    
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Test 1:  Set (b) Tracking Algorithm Validity 

Description: Determine an applicable noise term (q2) for follow-on tests 

Demonstrate susceptibility to losing the track in a turn of the PDAF with a low noise term 

Sensor Airborne Surveillance 
Radar 

Identification Friend or 
Foe System 

Electronic Surveillance 
System 

Infrared Search 
and Track 

System 

Tracker PDAF IMM Kalman Filter CGKF 

 Settings: - q2 = 1.0 

- 1 clutter pt 

- SLM q2 = 1.0 

- Turn q2 = 10000.0 

-  q2 = 1000.0 

 

- q2 = 1000.0 

 

Targets Maneuvering Aircraft (2) Non-Maneuvering Aircraft Slow-Moving Ship Fixed Site 

 

 

 

 

Figure 4.  Tracking Results for PDAF with Low Noise Term. 
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Test 1:  Set (b) Tracking Algorithm Validity 

Description: Determine an applicable noise term (q2) for follow-on tests 

Demonstrate susceptibility to losing the track in a turn of the PDAF with a low noise term 

Sensor Airborne Surveillance 
Radar 

Identification Friend or 
Foe System 

Electronic Surveillance 
System 

Infrared Search 
and Track 

System 

Tracker PDAF IMM Kalman Filter CGKF 

 Settings: - q2 = 1.0 

- 1 clutter pt 

- SLM q2 = 1.0 

- Turn q2 = 10000.0 

-  q2 = 1000.0 

 

- q2 = 1000.0 

 

Targets Maneuvering Aircraft Non-Maneuvering Aircraft Slow-Moving Ship Fixed Site 

 

 

 

 

Figure 5.  PDAF with Low Noise Term. 
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Test 1:  Set (b) Tracking Algorithm Validity 

Description: Determine an applicable noise term (q2) for follow-on tests 

Demonstrate how increasing the noise term improves the turn performance of the PDAF 

Sensor Airborne Surveillance 
Radar 

Identification Friend or 
Foe System 

Electronic Surveillance 
System 

Infrared Search 
and Track 

System 

Tracker PDAF IMM Kalman Filter CGKF 

 Settings: - q2 = 100.0 

- 1 clutter pt 

- SLM q2 = 1.0 

- Turn q2 = 10000.0 

-  q2 = 1000.0 

 

- q2 = 1000.0 

 

Targets Maneuvering Aircraft Non-Maneuvering Aircraft Slow-Moving Ship Fixed Site 

 

 

 

 

Figure 6.  PDAF with Increased Noise Term. 
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Test 1:  Set (b) Tracking Algorithm Validity 

Description: Determine an applicable noise term (q2) for follow-on tests 

Demonstrate how increasing the noise term improves the turn performance of the PDAF 

Sensor Airborne Surveillance 
Radar 

Identification Friend or 
Foe System 

Electronic Surveillance 
System 

Infrared Search 
and Track 

System 

Tracker PDAF IMM Kalman Filter CGKF 

 Settings: - q2 = 250.0 

- 1 clutter pt 

- SLM q2 = 1.0 

- Turn q2 = 10000.0 

-  q2 = 1000.0 

 

- q2 = 1000.0 

 

Targets Maneuvering Aircraft Non-Maneuvering Aircraft Slow-Moving Ship Fixed Site 

 

 

 

 

Figure 7.  PDAF with Increased Noise Term. 
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Test 1:  Set (b) Tracking Algorithm Validity 

Description: Determine an applicable noise term (q2) for follow-on tests 

Demonstrate how changes in the models affects the IMM performance.   

Sensor Airborne Surveillance 
Radar 

Identification Friend or 
Foe System 

Electronic Surveillance 
System 

Infrared Search 
and Track 

System 

Tracker PDAF IMM Kalman Filter CGKF 

 Settings: - q2 = 250.0 

- 1 clutter pt 

- SLM q2 = 1.0 

- Turn q2 = 10000.0 

-  q2 = 1000.0 

 

- q2 = 1000.0 

 

Targets Maneuvering Aircraft Non-Maneuvering Aircraft Slow-Moving Ship Fixed Site 

 

 

 

 

Figure 8.  IMM Tracking Performance with Varying Models. 
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Test 1:  Set (b) Tracking Algorithm Validity 

Description: Determine an applicable noise term (q2) for follow-on tests 

Demonstrate how changes in the models affects the IMM performance. 

Sensor Airborne Surveillance 
Radar 

Identification Friend or 
Foe System 

Electronic Surveillance 
System 

Infrared Search 
and Track 

System 

Tracker PDAF IMM Kalman Filter CGKF 

 Settings: - q2 = 1000.0 

- 1 clutter pt 

- SLM q2 = 1.0 

- Turn q2 = 10000.0 

-  q2 = 1000.0 

 

- q2 = 1000.0 

 

Targets Maneuvering Aircraft Non-Maneuvering Aircraft Slow-Moving Ship Fixed Site 

 

 

 

 

Figure 9.  IMM Tracking Performance with Varying Models. 
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Track Algorithm Validity Set (c) Results 

The airborne surveillance radar was the first sensor to be evaluated with all 4 

trackers (Figures 10 through 13). For the maneuvering target case of Figure 10, the 

trackers all performed reasonably well.  However, the CGKF took far too long to 

establish the track  The large initial error (>6000ft in this case) is a characteristic of the 

CGKF.  The only tracker with an advantage in this case was the IMM.  It was slightly 

worse in SLM and slightly better in the turn.  It would be easy to force the KF as the 

optimum solution in SLM by reducing the noise term to 1, but turn performance would 

suffer greatly.  Also, the IMM could be forced to perform better in the turn by increasing 

the turn noise term.  However, the SLM performance would be further degraded.   

In the case of the non-maneuvering target (Figure 11), the PDAF and the Kalman 

filter were about the same.  The IMM was slightly worse mainly because of the 

expectation of a turn.  The CGKF performed adequately, but errors in the CGKF 

increased much faster than the other trackers as range to the target and mean 

measurement error increased.  The mean measurement errors increased over time due to 

increasing range from the sensor platform.   

In the case of the slow-moving ship (12 knots), the PDAF immediately picked up 

on the clutter point and tracked off (Figure 12).  Some parameters may need to be 

changed in the PDAF for tracking slow moving targets.  The PDAF may not be well 

suited for tracking slow moving and stationary targets in a clutter region without 

modifications to make the code more adaptable.   



 

 73

For the fixed site (Figure 13), the trackers all seemed to perform about the same 

for the surveillance radar, even though the mean measurement error was considerably 

higher.  The IMM error was slightly higher throughout, but that may still be due to the 

turn expectation and the high q2 of the turn model. 
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Test 1:  Set (c) Tracking Algorithm Validity 

Description: Observe the performance of the trackers using the same sensor type with each of the trackers 

 

Sensor Airborne Surveillance 
Radar 

Identification Friend or 
Foe System 

Electronic Surveillance 
System 

Infrared Search 
and Track 

System 

Tracker PDAF IMM Kalman Filter CGKF 

 Settings: - q2 = 1000.0 

- 1 clutter pt 

- SLM q2 = 1.0 

- Turn q2 = 10000.0 

-  q2 = 1000.0 - q2 = 1000.0 

Targets Maneuvering Aircraft Non-Maneuvering Aircraft Slow-Moving Ship Fixed Site 

 

 

 

 

Figure 10.  Tracker Comparison with One Sensor Type for the Maneuvering Target. 
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Test 1:  Set (c) Tracking Algorithm Validity 

Description: Observe the performance of the trackers using the same sensor type with each of the trackers 

 

Sensor Airborne Surveillance 
Radar 

Identification Friend or 
Foe System 

Electronic Surveillance 
System 

Infrared Search 
and Track 

System 

Tracker PDAF IMM Kalman Filter CGKF 

 Settings: - q2 = 1000.0 

- 1 clutter pt 

- SLM q2 = 1.0 

- Turn q2 = 10000.0 

- q2 = 1000.0 - q2 = 1000.0 

Targets Maneuvering Aircraft Non-Maneuvering Aircraft Slow-Moving Ship Fixed Site 

 

 

 

 

Figure 11. Tracker Comparison with One Sensor Type for the Non-maneuvering Target. 

.   



 

 76

Test 1:  Set (c) Tracking Algorithm Validity 

Description: Observe the performance of the trackers using the same sensor type with each of the trackers 

 

Sensor Airborne Surveillance 
Radar 

Identification Friend or 
Foe System 

Electronic Surveillance 
System 

Infrared Search 
and Track 

System 

Tracker PDAF IMM Kalman Filter CGKF 

 Settings: - q2 = 1000.0 

- 1 clutter pt 

- SLM q2 = 1.0 

- Turn q2 = 10000.0 

-  q2 = 1000.0 - q2 = 1000.0 

Targets Maneuvering Aircraft Non-Maneuvering Aircraft Slow-Moving Ship Fixed Site 

 

 

 

 

Figure 12. Tracker Comparison with One Sensor Type for the Slow-moving Ship. 
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Test 1:  Set (c) Tracking Algorithm Validity 

Description: Observe the performance of the trackers using the same sensor type with each of the trackers 

 

Sensor Airborne Surveillance 
Radar 

Identification Friend or 
Foe System 

Electronic Surveillance 
System 

Infrared Search 
and Track 

System 

Tracker PDAF IMM Kalman Filter CGKF 

 Settings: - q2 = 1000.0 

- 1 clutter pt 

- SLM q2 = 1.0 

- Turn q2 = 10000.0 

-  q2 = 1000.0 - q2 = 1000.0 

Targets Maneuvering Aircraft Non-Maneuvering Aircraft Slow-Moving Ship Fixed Site 

 

 

 

 

Figure 13. Tracker Comparison With One Sensor Type for the Fixed Site Target. 
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Track Algorithm Validity Set (d) Results 

For Set (d), the surface fire control radar was examined to look for anomalies in 

the trackers when paired with a highly accurate sensor (Figure 14).  The ranges and 

accuracy’s of the sensor may be unrealistic, but there was no apparent advantage to any 

of the trackers with a sensor this accurate.  In other words, the simple trackers worked 

just as well as the more complex trackers.  This phenomenon gives the appearance that 

the state prediction and estimation was a waste of time and computing power.  However, 

estimation is still necessary for predicting the state of the target, for tracking a 

maneuvering target, and for guiding a missile or projectile to an impact point.  For the 

purposes of this test, the low errors were used to look for anomalies in the trackers.   
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Test 1:  Set (d) Tracking Algorithm Validity 

Description: Observe the performance of the trackers using the same sensor type with each of the trackers 

 

Sensor Fire Control Radar 
Simulator 

Identification Friend or 
Foe System 

Electronic Surveillance 
System 

Infrared Search 
and Track 

System 

Tracker PDAF IMM Kalman Filter CGKF 

Settings: - q2 = 1000.0 

- 1 clutter pt 

- SLM q2 = 1.0 

- Turn q2 = 10000.0 

-  q2 = 1000.0 - q2 = 1000.0 

Targets Maneuvering Aircraft Non-Maneuvering Aircraft Slow-Moving Ship Fixed Site 

 

 

 

 

Figure 14. Tracker Comparison with One Sensor Type for the Maneuvering Aircraft. 
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Track Algorithm Validity Set (e) Results 

The last test case in the first set of runs was the Infrared Search and Track (IRST) 

simulator.  In formulating this very simple model of the an IRST system, the bearing to 

the target was assumed to be very accurate and the range was assumed to be very 

ambiguous.  In a true IRST system, the range is not measured by the system, unless by 

some other means.  To keep this analysis simple, it is assumed that the IRST has already 

established a track, and the measurement is based on the position report from the tracker.   

For the maneuvering target (Figure 15), the higher mean measurement noise of 

the IRST system made little difference in the tracking performance.  The CGKF error 

steadily increased as range to the target increased.  An error increase in the other trackers 

was imperceptible.  The IMM handled the turn fairly well, yet the Kalman and the PDAF 

both did worse in the turn. 
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Test 1:  Set (e) Tracking Algorithm Validity 

Description: Observe the performance of the trackers using the same sensor type with each of the trackers 

 

Sensor Airborne Surveillance 
Radar 

Identification Friend or 
Foe System 

Electronic Surveillance 
System 

Infrared Search 
and Track 

System 

Tracker PDAF IMM Kalman Filter CGKF 

Settings: - q2 = 1000.0 

- 1 clutter pt 

- SLM q2 = 1.0 

- Turn q2 = 10000.0 

-  q2 = 1000.0 - q2 = 1000.0 

Targets Maneuvering Aircraft Non-Maneuvering Aircraft Slow-Moving Ship Fixed Site 

 

 

 

 

Figure 15. Tracker Comparison with One Sensor Type for the Maneuvering Aircraft.  
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For the non-maneuvering target (Figure 16), the results were similar to the 

maneuvering target case.  The CGKF error gradually increased, while the other trackers 

remained steady around 1000 feet of error.  For the slow moving ship of Figure 17, the 

CGKF error seemed to vary with distance from the sensor platform, even though the 

measurement error remained about the same over the simulation period.  The PDAF, the 

IMM, and the KF all hovered around 1000 feet of error.   

In this case of the fixed site (Figure 18), the PDAF lost the track, yet the other 

trackers did consistently well.  The clutter point may have caused sufficient variation in 

the state estimate to induce a velocity and cause the solution to track off.  This problem 

did not occur every time with the PDAF and may indicate a higher degree of uncertainty 

in a PDAF solution.  To handle a slow-moving or non-moving target in a clutter region, 

some modification within the PDAF would be required to help classify the target and 

allow better estimates.  For example, a velocity threshold could be used to help decide the 

class or type of target, so that unrealistic velocity estimates could be eliminated from the 

solution.   
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Test 1:  Set (e) Tracking Algorithm Validity 

Description: Observe the performance of the trackers using the same sensor type with each of the trackers 

 

Sensor Airborne Surveillance 
Radar 

Identification Friend or 
Foe System 

Electronic Surveillance 
System 

Infrared Search 
and Track 

System 

Tracker PDAF IMM Kalman Filter CGKF 

Settings: - q2 = 1000.0 

- 1 clutter pt 

- SLM q2 = 1.0 

- Turn q2 = 10000.0 

-  q2 = 1000.0 - q2 = 1000.0 

Targets Maneuvering Aircraft Non-Maneuvering Aircraft Slow-Moving Ship Fixed Site 

 

 

 

 

Figure 16. Tracker Comparison With One Sensor Type For The Non-Maneuvering 
Aircraft. 
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Test 1:  Set (e) Tracking Algorithm Validity 

Description: Observe the performance of the trackers using the same sensor type with each of the trackers 

 

Sensor Airborne Surveillance 
Radar 

Identification Friend or 
Foe System 

Electronic Surveillance 
System 

Infrared Search 
and Track 

System 

Tracker PDAF IMM Kalman Filter CGKF 

Settings: - q2 = 1.0 

- 1 clutter pt 

- SLM q2 = 1.0 

- Turn q2 = 10000.0 

-  q2 = 1000.0 - q2 = 1000.0 

Targets Maneuvering Aircraft Non-Maneuvering Aircraft Slow-Moving Ship Fixed Site 

 

 

 

 

Figure 17. Tracker Comparison With One Sensor Type For The Slow-Moving Ship. 
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Test 1:  Set (e) Tracking Algorithm Validity 

Description: Observe the performance of the trackers using the same sensor type with each of the trackers 

 

Sensor Airborne Surveillance 
Radar 

Identification Friend or 
Foe System 

Electronic Surveillance 
System 

Infrared Search 
and Track 

System 

Tracker PDAF IMM Kalman Filter CGKF 

Settings: - q2 = 1000.0 

- 1 clutter pt 

- SLM q2 = 1.0 

- Turn q2 = 10000.0 

-  q2 = 1000.0 - q2 = 1000.0 

Targets Maneuvering Aircraft Non-Maneuvering Aircraft Slow-Moving Ship Fixed Site 

 

 

 

 

Figure 18. Tracker Comparison with One Sensor Type for the Fixed Site Target. 
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B.   TEST 2:  MULTIPLE SENSOR MULTIPLE TRACK 

For Test 2, the multiple sensor/multiple track case was examined to demonstrate 

the different capabilities of sensors and trackers.  Representative plots for the 

maneuvering target were included.  The sensors and trackers were paired up as shown in 

Table 5.   

Airborne Surveillance Radar Probabilistic Data Association Filter 
(PDAF) 

Identification Friend or Foe Detection 
System (IFF) 

Interacting Multiple Models (IMM)  

2-model filter 

Electronic Surveillance Measures System 
(ESM) 

Kalman Filter (KF) 

Infrared Search and Track System (IRST) 

 

Constant Gain Kalman Filter (CGKF) 

Table 5.  Sensor/Tracker Pairs. 

 

Figure 19 is a display of the mean measurement errors in each of the sensors, 

while Figure 20 is the tracking solution for each sensor for the same run. Again, this test 

was simply a demonstration of the diversity in sensor capabilities.  By observation, the 

trackers are sensitive to the amount of error in the sensors.  For example, the IMM 

solution tracked very well due to the low errors in the IFF sensor.   

Some fine tuning in the filters could help improve tracking performance.  

However, a trade-off exists when adjusting the noise term, q2.  If the noise term is 

increased to reduce errors in the turn, the SLM performance will suffer as shown in Test 

1.  This concept will be demonstrated again in Test 3, Set (c) by increasing the noise term 

in each tracker. 
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  Test 2:  Set (a) Multiple Target/Multiple Sensor 

Description: Demonstrate the differences between sensors, their associated mean measurement errors, and the resulting 
tracking solution.   

Sensor Airborne Surveillance 
Radar 

Identification Friend or 
Foe System 

Electronic Surveillance 
System 

Infrared Search 
and Track 

System 

Tracker PDAF IMM Kalman Filter CGKF 

Settings: - q2 = 1000.0 

- 1 clutter pt 

- SLM q2 = 1.0 

- Turn q2 = 10000.0 

-  q2 = 1000.0 - q2 = 1000.0 

Targets Maneuvering Aircraft Non-Maneuvering Aircraft Slow-Moving Ship Fixed Site 

 

 

 

 

Figure 19.  Mean Measurement Error for Varying Sensor Types. 
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Test 2:  Set (a) Multiple Target/Multiple Sensor 

Description: Demonstrate the differences between sensors, their associated mean measurement errors, and the resulting 
tracking solution.   

Sensor Airborne Surveillance 
Radar 

Identification Friend or 
Foe System 

Electronic Surveillance 
System 

Infrared Search 
and Track 

System 

Tracker PDAF IMM Kalman Filter CGKF 

Settings: - q2 = 1000.0 

- 1 clutter pt 

- SLM q2 = 1.0 

- Turn q2 = 10000.0 

-  q2 = 1000.0 - q2 = 1000.0 

Targets Maneuvering Aircraft Non-Maneuvering Aircraft Slow-Moving Ship Fixed Site 

 

 

 

 

Figure 20.  Tracking Solutions for the Multiple Sensor Case. 
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C.   TEST 3:  OBSERVATIONS ON ALGORITHM BEHAVOIR IN A SIMPLE 

COMBINED SOLUTION 

The purpose to Test 3 was to provide a demonstration of a multiple sensor system 

output, and to gain insight into the behavior of a combined tracker estimate.  The 

combined solution was based on weights that were empirically derived from the results of 

Test 1, and the multiple sensor simulation results of Test 2.  No additional data sources 

were used in determining the solution.  The combined state result is simply the weighted 

average of each of the tracker solutions.  This increases the amount of data stored by the 

program.  For the fusim simulation, the storage matrices and the function calls were a first 

step in implementing a track-to-track data association algorithm.  Again, for this section, 

no additional filtering and no data association occurs in calculation of the weighted 

average of the track states.  A true sensor fusion algorithm will be much more 

complicated [Ref. 1].   

Combined Solution Set (a) Results  

The simple combined solution has initial conditions as described in Test 1 for the 

single sensor case.  The output of the simulation is included in Figure 21.  One sensor 

type is used with the four trackers to compare the trackers and to observe the results of 

combining the state outputs of each tracker in a rudimentary fashion. To further 

demonstrate the effects of diversity in the sensors and tracking algorithms, the Kalman 

filter was given a low noise term (q2 = 2) to allow an optimum solution in SLM.    

In the turn, only one of the 4 sensor/tracker pairs reported high errors (Figures 22 

and 23).  This effect was by design due to the reduced noise factor, q2 in the Kalman 
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Filter.   The overall error was significantly reduced by combining the results of the 

different systems.  The non-maneuvering target (Figure 24) had the best results from the 

Kalman Filter, since the filter was optimized for straight line tracking.   

 

Figure 21.  Sample Plot of the Combined Solution. 

 

For the stationary target (Figure 25), the mean measurement error was greater due 

to the distance from the sensor platform.  Again, the Kalman filter performed the best 

even though the sensor errors were high.  The combined solution represents a 

compromise.    
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Test 3:  Set (a) Simple Combined Solution for Multiple Target/Multiple Sensor 

Description: Demonstrate the results of combining the solutions into a single output state. 

Demonstrate the performance of the trackers using a single sensor  type. 

Sensor Airborne Surveillance 
Radar 

Identification Friend or 
Foe System 

Electronic Surveillance 
System 

Infrared Search 
and Track 

System 

Tracker PDAF IMM Kalman Filter CGKF 

Settings: - q2 = 1000.0 

- 1 clutter pt 

- SLM q2 = 1.0 

- Turn q2 = 10000.0 

-  q2 = 2.0 - q2 = 1000.0 

Targets Maneuvering Aircraft Non-Maneuvering Aircraft Slow-Moving Ship Fixed Site 

 

 

 

Figure 22.  Simple Combined Solution for Maneuvering Target. 
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Test 3:  Set (a) Simple Combined Solution for Multiple Target/Multiple Sensor 

Description: Demonstrate the results of combining the solutions into a single output state. 

Demonstrate the performance of the trackers using a single sensor  type. 

Sensor Airborne Surveillance 
Radar 

Identification Friend or 
Foe System 

Electronic Surveillance 
System 

Infrared Search 
and Track 

System 

Tracker PDAF IMM Kalman Filter CGKF 

Settings: - q2 = 
1000.0 

- 1 clutter pt 

- SLM q2 = 1.0 

- Turn q2 = 10000.0 

-  q2 = 2.0 - q2 = 1000.0 

Targets Maneuvering Aircraft Non-Maneuvering Aircraft Slow-Moving Ship Fixed Site 

 

 

 

 

Figure 23. Simple Combined Solution for Maneuvering Target. 
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Test 3:  Set (a) Simple Combined Solution for Multiple Target/Multiple Sensor 

Description: Demonstrate the results of combining the solutions into a single output state. 

Demonstrate the performance of the trackers using a single sensor  type. 

Sensor Airborne Surveillance 
Radar 

Identification Friend or 
Foe System 

Electronic Surveillance 
System 

Infrared Search 
and Track 

System 

Tracker PDAF IMM Kalman Filter CGKF 

Settings: - q2 = 1000.0 

- 1 clutter pt 

- SLM q2 = 1.0 

- Turn q2 = 10000.0 

-  q2 = 2.0 - q2 = 1000.0 

Targets Maneuvering Aircraft Non-Maneuvering Aircraft Slow-Moving Ship Fixed Site 

 

 

 

 

Figure 24. Simple Combined Solution for Non-Maneuvering Target. 
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Test 3:  Set (a) Simple Combined Solution for Multiple Target/Multiple Sensor 

Description: Demonstrate the results of combining the solutions into a single output state. 

Demonstrate the performance of the trackers using a single sensor  type. 

Sensor Airborne Surveillance 
Radar 

Identification Friend or 
Foe System 

Electronic Surveillance 
System 

Infrared Search 
and Track 

System 

Tracker PDAF IMM Kalman Filter CGKF 

Settings: - q2 = 1000.0 

- 1 clutter pt 

- SLM q2 = 1.0 

- Turn q2 = 10000.0 

-  q2 = 2.0 - q2 = 1000.0 

Targets Maneuvering Aircraft Non-Maneuvering Aircraft Slow-Moving Ship Fixed Site 

 

 

 

 

Figure 25. Simple Combined Solution for Fixed Site. 
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Combined Solution Set (b) Results   

For the 2nd set of runs, four different sensor types were used to observe the 

benefits of combining the data to form a composite tracking solution.  Because of the 

diverse nature of the sensors, this implementation was somewhat representative of an 

actual sensor platform system.  The combined solution was an attempt to take advantage 

of the best qualities of each of the sensor/tracker pairs.  The model has a sensor that can 

handle clutter, a sensor that was designed to handle turning motion, an optimum straight-

line-motion tracker, and a simplified tracker.  A simple truth that has been alluded to in 

previous sections is the nature of the Electronic Surveillance Measures (ESM) and the 

Infrared (IR) sensors.  They are ESM and IR sensors in name only.  In fact, the way that 

the ESM and IR sensors are modeled in the fusim program more closely resemble radar 

or IFF detection systems with greatly reduced resolution.  For one other observation, it is 

unrealistic to expect an ESM system to maintain track on a moving/maneuvering target, 

since it requires a cooperative target.  The ESM solution is for demonstration purposes 

only.    

For this set of runs (Figures 26 through 29), the sensors did not have significantly 

large errors. However, the plots still show a significant reduction overall for the four 

sensors.  In the turn, only one of the four sensors/tracker pairs reported high errors.  

Between the two maneuvering target Figures (26 and 27), the differences in the plots 

show how target orientation with respect to the sensor platform can have an impact on the 

target errors and the combined solution.  The error was significantly reduced by 

combining the results of the different systems.   
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As evidenced in all the previous plots (and previous tests), it would be 

advantageous to disregard the solution obtained with the CGKF until the initial tracking 

error has settled to below the measurement noise.  This is another area where errors in the 

combined solution could be truncated.  

To demonstrate that the combined solution was not terribly susceptible to more 

realistic errors in the IRST system, the errors were adjusted to observe the effects on the 

combined solution (Figures 30 through 31).   

In the resulting plots of Figures 30 and 31, the IRST/CGKF pair has an even 

larger initialization error due to track start-up.  This unwanted result had an even greater 

effect on the combined solution, indicating a need to let the initialization errors settle 

prior to using the data with any confidence.   
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Test 3:  Set (b) Simple Combined Solution for Multiple Target/Multiple Sensor 

Description: Demonstrate the results of combining the solutions into a single output state. 

Demonstrate the performance of the trackers using sensors of varying type 

Sensor Airborne Surveillance 
Radar 

Identification Friend or 
Foe System 

Electronic Surveillance 
System 

Infrared Search 
and Track 

System 

Tracker PDAF IMM Kalman Filter CGKF 

Settings: - q2 = 1000.0 

- 1 clutter pt 

- SLM q2 = 1.0 

- Turn q2 = 10000.0 

-  q2 = 2.0 - q2 = 1000.0 

Targets Maneuvering Aircraft Non-Maneuvering Aircraft Slow-Moving Ship Fixed Site 

 

 

 

 

Figure 26.  Simple Combined Solution with Diverse Sensors, Maneuvering Target. 
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Test 3:  Set (b) Simple Combined Solution for Multiple Target/Multiple Sensor 

Description: Demonstrate the results of combining the solutions into a single output state. 

Demonstrate the performance of the trackers using sensors of varying type 

Sensor Airborne Surveillance 
Radar 

Identification Friend or 
Foe System 

Electronic Surveillance 
System 

Infrared Search 
and Track 

System 

Tracker PDAF IMM Kalman Filter CGKF 

Settings: - q2 = 1000.0 

- 1 clutter pt 

- SLM q2 = 1.0 

- Turn q2 = 10000.0 

-  q2 = 2.0 - q2 = 1000.0 

Targets Maneuvering Aircraft Non-Maneuvering Aircraft Slow-Moving Ship Fixed Site 

 

 

 

 

Figure 27. Simple Combined Solution with Diverse Sensors, Maneuvering Target. 
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Test 3:  Set (b) Simple Combined Solution for Multiple Target/Multiple Sensor 

Description: Demonstrate the results of combining the solutions into a single output state. 

Demonstrate the performance of the trackers using sensors of varying type 

Sensor Airborne Surveillance 
Radar 

Identification Friend or 
Foe System 

Electronic Surveillance 
System 

Infrared Search 
and Track 

System 

Tracker PDAF IMM Kalman Filter CGKF 

Settings: - q2 = 1000.0 

- 1 clutter pt 

- SLM q2 = 1.0 

- Turn q2 = 10000.0 

-  q2 = 2.0 - q2 = 1000.0 

Targets Maneuvering Aircraft Non-Maneuvering Aircraft Slow-Moving Ship Fixed Site 

 

 

 

 

Figure 28. Simple Combined Solution with Diverse Sensors, Non-Maneuvering Target. 

 



 

 100

Test 3:  Set (b) Simple Combined Solution for Multiple Target/Multiple Sensor 

Description: Demonstrate the results of combining the solutions into a single output state. 

Demonstrate the performance of the trackers using sensors of varying type 

Sensor Airborne Surveillance 
Radar 

Identification Friend or 
Foe System 

Electronic Surveillance 
System 

Infrared Search 
and Track 

System 

Tracker PDAF IMM Kalman Filter CGKF 

Settings: - q2 = 1000.0 

- 1 clutter pt 

- SLM q2 = 1.0 

- Turn q2 = 10000.0 

-  q2 = 2.0 - q2 = 1000.0 

Targets Maneuvering Aircraft Non-Maneuvering Aircraft Slow-Moving Ship Fixed Site 

 

 

 

 

Figure 29. Simple Combined Solution with Diverse Sensors, Fixed Site. 
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Test 3:  Set (b) Simple Combined Solution for Multiple Target/Multiple Sensor 

Description: Demonstrate the results of combining the solutions into a single output state. 

Demonstrate the performance of the trackers using sensors of varying type 

Sensor Airborne Surveillance 
Radar 

Identification Friend or 
Foe System 

Electronic Surveillance 
System 

Infrared Search 
and Track 

System 

Tracker PDAF IMM Kalman Filter CGKF 

Settings: - q2 = 1000.0 

- 1 clutter pt 

- SLM q2 = 1.0 

- Turn q2 = 10000.0 

-  q2 = 2.0 - q2 = 1000.0 

Targets Maneuvering Aircraft Non-Maneuvering Aircraft Slow-Moving Ship Fixed Site 

 

 

 

 

Figure 30. Combined Solution with Diverse Sensors, Altered Sensor Errors. 
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Test 3:  Set (b) Simple Combined Solution for Multiple Target/Multiple Sensor 

Description: Demonstrate the results of combining the solutions into a single output state. 

Demonstrate the performance of the trackers using sensors of varying type 

Sensor Airborne Surveillance 
Radar 

Identification Friend or 
Foe System 

Electronic Surveillance 
System 

Infrared Search 
and Track 

System 

Tracker PDAF IMM Kalman Filter CGKF 

Settings: - q2 = 1000.0 

- 1 clutter pt 

- SLM q2 = 1.0 

- Turn q2 = 10000.0 

-  q2 = 2.0 - q2 = 1000.0 

Targets Maneuvering Aircraft Non-Maneuvering Aircraft Slow-Moving Ship Fixed Site 

 

 

 

 

Figure 31.  Combined Solution with Diverse Sensors, Altered Sensor Errors. 
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Combined Solution Set (c) Results 

For the third set of runs in the Test 3 configuration, the noise term (q2) was 

increased in each of the tracking filters to allow better performance when tracking 

maneuvering targets.  Also, observing the overall effect on the combined solution was an 

objective of this test set.  The tracker parameters were altered as shown in Table 6.  

Tracker: PDAF IMM KF CGKF 

Previous  q2: 1000 SLM:  1 

Turn:  10000 
2 1000 

Set 3        q2: 5000 SLM:  1 

Turn:  100000 
5000 5000 

Table 6.  Altered Parameters of Combined Solution Set 3. 

 

For this set of runs, the overall combined solution was slightly better than 

expected.  Part of the reason for the success of the solution was the continued effective 

performance of the IMM.  Although the IMM was paired with a more accurate sensor, 

increasing the turn q2 did not greatly affect the SLM performance.  The Kalman filter 

solution for the ESM system showed the most dramatic increase in overall error (figure 

32), while the CGKF solution for the IRST system was only slightly increased.    

However, the turn performance in each of the trackers improved, resulting in virtually no 

increase in error due to turning motion in the combined solution.   

Against the non-maneuvering target (Figure 33), the ESM/Kalman filter solution 

was no better than the IRST/constant gain case, even though the IRST sensor had much 

more error than the ESM system.  Part of this poor performance in the KF can be 

attributed to a very large distance from the sensor platform.  However, when compared to 

the low noise case (q2 = 2) of figure 31, the KF did a fine job of tracking over great 
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distances even when the sensor error was fairly high (as in the case of the ESM system).  

The decreased performance of the Kalman filter from Figure 31 to Figure 33 is directly 

attributable to the increased noise term.  The Kalman filter also had poor performance 

against the fixed site in Figure 34.  The poor performance of the KF is an indication that a 

compromise is necessary when using a standard Kalman filter for tracking.  Should the 

Kalman filter be optimized for SLM performance, or for turning performance?  The 

Kalman solution with a low noise term is the optimum solution when the target is not 

maneuvering.  In Test 3a, the Kalman filter had the least error against the non-

maneuvering target and the fixed site (a same sensor comparison).   
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Test 3:  Set (c) Simple Combined Solution for Multiple Target/Multiple Sensor 

Description: Demonstrate the results of combining variable solutions into a single output state. 

Demonstrate the performance of the trackers with increased noise terms.   

Sensor Airborne Surveillance 
Radar 

Identification Friend or 
Foe System 

Electronic Surveillance 
System 

Infrared Search 
and Track 

System 

Tracker PDAF IMM Kalman Filter CGKF 

Settings: - q2 = 5000.0 

- 1 clutter pt 

- SLM q2 = 1.0 

- Turn q2 = 100000.0 

-  q2 = 5000.0 - q2 = 5000.0 

Targets Maneuvering Aircraft Non-Maneuvering Aircraft Slow-Moving Ship Fixed Site 

 

 

 

 

Figure 32. Combined Solution with Diverse Sensors, Altered Tracker Parameters. 

 



 

 106

Test 3:  Set (c) Simple Combined Solution for Multiple Target/Multiple Sensor 

Description: Demonstrate the results of combining variable solutions into a single output state. 

Demonstrate the performance of the trackers with increased noise terms.   

Sensor Airborne Surveillance 
Radar 

Identification Friend or 
Foe System 

Electronic Surveillance 
System 

Infrared Search 
and Track 

System 

Tracker PDAF IMM Kalman Filter CGKF 

Settings: - q2 = 5000.0 

- 1 clutter pt 

- SLM q2 = 1.0 

- Turn q2 = 100000.0 

-  q2 = 5000.0 - q2 = 5000.0 

Targets Maneuvering Aircraft Non-Maneuvering Aircraft Slow-Moving Ship Fixed Site 

 

 

 

 

Figure 33. Combined Solution with Diverse Sensors, Altered Tracker Parameters. 
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Test 3:  Set (c) Simple Combined Solution for Multiple Target/Multiple Sensor 

Description: Demonstrate the results of combining variable solutions into a single output state. 

Demonstrate the performance of the trackers with increased noise terms.   

Sensor Airborne Surveillance 
Radar 

Identification Friend or 
Foe System 

Electronic Surveillance 
System 

Infrared Search 
and Track 

System 

Tracker PDAF IMM Kalman Filter CGKF 

Settings: - q2 = 5000.0 

- 1 clutter pt 

- SLM q2 = 1.0 

- Turn q2 = 100000.0 

-  q2 = 5000.0 - q2 = 5000.0 

Targets Maneuvering Aircraft Non-Maneuvering Aircraft Slow-Moving Ship Fixed Site 

 

 

 

 

Figure 34. Combined Solution with Diverse Sensors, Altered Tracker Parameters. 
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VI. CONCLUSIONS AND RECOMMENDATIONS 
 

Testing algorithms in a simulation environment can be an effective way to study 

the sensor fusion problem without using live sensors and targets.  The cost of trying to 

use actual targets with repeated initial conditions would be astronomical.  A simulation 

scheme can test and retest an algorithm using randomly generated perturbations to 

provide an indication of the algorithm effectiveness.  The fusim program was written to 

give the user flexibility in selecting a sensor platform, the sensors used on the platform, 

the target types, the problem orientation, and the tracking algorithms to be used with the 

sensors.  To change parameters, the user can simply alter the MATLAB code within the 

applicable files to produce the desired output.  The fusim program can be used to compare 

tracking algorithms in a multiple sensor/multiple target environment, view the effects of 

using diverse sensors, and evaluate the effects of data association algorithms.  For this 

early edition of the fusim program, only a rudimentary combination of sensor/tracker 

outputs was used to evaluate the effects of multiple, diverse sensors.   

The fusim program was designed to allow averaging over numerous runs to find a 

mean solution for each sensor and track update.  The error generation was based on 

Gaussian distributed random white noise, meaning that numerous runs and average 

solutions would be necessary to account for the randomness of the noise.  For most test 

cases, 100 or 200 runs were used to produce a smooth track output and error plot.  

However, this information tells nothing of the tracker performance for a single run.  

Therefore, the program also allows plotting results from a single run.  Data gathered over 

a single run may be more relevent for evaluating a tracking or fusion algorithm once the 
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algorithm is proven.  When used against live targets, the tracker will have to perform 

consistently and predictably.   

In this study, the effect of multiple sensors in different locations contributing to 

the tracking picture was not analyzed.  None of the track results were able to take 

advantage of multiple sensor locations, as in the case of a Cooperative Engagement 

Capability system with multiple participating units.  Also, none of the tracking algorithms 

were true multiple sensor/multiple track algorithms.  Throughout the simulation, every 

measurement was assumed to be associated with only one track.  To create a true multiple 

sensor tracking routine would require measurement-to-track and track-to-track data 

association.  Handling of multiple tracks would require the use of a Multiple Hypothesis 

Tracker or a Joint Probabilistic Data Association Filter, or some other means of 

measurement-to-track data association. 

The performance of each of the trackers was highly dependent on the errors 

within each sensor, and in the way that each sensor measured target data.  One of the 

artificial aspects of the fusim program is that all sensors report measurements in range 

and bearing.  For example, the modeling of the ESM and IR sensors was greatly 

oversimplified in the fusim program to allow simple application of the measurement and 

tracking functions.  Instead of using bearing only, such as in the case of an ESM target, 

error was added to an x-y position report.  For all sensors in the fusim program, errors 

were modeled in range and bearing.  The true x-y position reports were converted to 

range and bearing, the range/bearing errors were added, the position report was converted 

back to x-y coordinates, and the ‘noisy’ measurement (and error covarinance) was 

returned to the main program for use in the tracking functions.  This same procedure 
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occurred for all sensors and tracks regardless of type.  In Test 1 Set (a), where the sensor 

errors were zero, the tracker that was used was irrelevant for all cases except the 

maneuvering target.  Some error was noted in the turn, suggesting that the kinematics of 

the problem has an effect on the target state even if the errors in the sensor are zero.  

Also, nearly every test case involved a moving sensor platform.  The sensor platform 

implementation was a little more realistic, but the analysis was more challenging since 

the orientation of the problem changed continuously.  The data is not as smooth as it 

would be for a fixed sensor platform with no navigation errors in the position.  This 

analysis provided a general idea of how each of the trackers performed from the 

perspective of the sensor platform.     

The fusim program was used to compare the performance of several different 

tracking algorithms.  The PDAF was the only tracker in this evaluation that was forced to 

deal with clutter.  Because of the clutter variable, the PDAF was not as consistent and 

predictable as the other trackers.  On one set of runs, the PDAF ran away from the actual 

position of the stationary target due to a slight velocity induced in the state vector by the 

clutter point.  Since the clutter point was placed around the predicted state and the tracker 

does not distinguish between the clutter measurement and the actual measurement, the 

state was allowed to move away from the actual position of the target.  The data link 

report followed suit, and provided a good illustration of how easy it is to flood a system 

with bad information.  The information output from a system is only as good as the 

information input.   

The IMM was the most consistent tracker of the evaluation set for maneuvering 

targets.  However, the IMM also performed fairly well with non-maneuvering targets, 
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slow-moving targets, and fixed sites.  In the algorithm, the only difference between the 

two models was the noise factor q2 in the SLM model and the turn model.  The IMM 

produced the best overall tracking solution every time, but required much more code and 

computation time (see Appendix B). 

The Kalman filter performed very well when tracking non-maneuvering, slow-

moving, and fixed-site targets.   The Kalman filter did not handle maneuvering targets 

very well.  By increasing the plant noise, the Kalman filter handled the turns better, but 

resulted in noisier straight-line tracking with a higher average error.   

Repeatedly, the Constant Gain Kalman Filter produced reasonable straight-line 

performance, but did not do as well during initialization or in turning motion.  The 

tracker required the fewest computations, but the large track initiation errors were present 

in every test case, except for the zero-error case.  However, when the measurement errors 

were low due to sensor accuracy or due to the target position relative to the sensor 

platform, the CGKF performed as well as the PDAF or the IMM for the same 

sensor/target pair.  This suggests that the CGKF would be useful in high-workload 

situations where non-priority tracks could be tracked with less computational strain, or 

the CGKF would be useful when sensor errors are low.   

The applications of sensor fusion are widely varied, but particular attention is paid 

to the military application in this thesis.  Battle group operations, the Common 

Operational Picture, land attack scenarios, time-critical strike, and satellite data 

applications are just a few examples of the military uses of Sensor Fusion.  The ‘Sensor 

Fusion’ problem is very broad in scope, to include network centric interconnectivity, 
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platform level processing and display, and global adaptivity for flexible mission 

application.  This thesis does not address the global aspects of sensor fusion such as 

interoperability or systems engineering, nor does it address platform level systems 

engineering.  Rather, this thesis was an attempt to reach into the core of sensor fusion 

algorithms and discuss the tracking and data association aspects of tracking algorithms.   

The fusim program was designed with a great deal of flexibility to allow for future 

applications and upgrades.  It is recommended that this study be continued to allow the 

following expansions: 

1. Extend this 2-dimensional study to 3-D with full coordinate system 

accounting. 

2. Produce functions that allow full data association for (1) measurement-to-

track (2) track-to-track (3) data-to-track.   

3. Integrate an emitter library, similar to the sensor file, that could be used to 

provide more realistic ESM system inputs, and attribute information.   

4. Expand the program to include full accounting of track attributes for 

determining track identification, and allow attribute tracking.   

5. Design the Graphical User Interface for maximum user benefit of fusim 

and study the Human-Machine Interface aspects of Sensor Fusion.     
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APPENDIX A.  FUSIM FUNCTIONAL DESCRIPTION 
 

Fusim Functional Description 

fusim   

The FUSIM file is the main control file for the entire simulation.  FUSIM calls the 

various associated functions to set up the needed matrices and variables, creates the truth 

data for the targets, adds the measurement error, sends the noisy measurements to the 

tracker, and then stores and plots the target states and associated least square errors.  The 

FUSIM function is called from the user interface or from the MATLAB command line.  

The MATLAB code for all the functions is included in Appendix B.  First, the START 

and FTURN functions are called to initialize all the timing and target parameters, as input 

by the user.  From this, the total number of maneuvering and non-maneuvering targets are 

determined and the sensor information (including number and types of sensors) is 

extracted.  Based on the user selection, the primary tracker type is extracted for the 

primary sensor, and the other sensors are assigned the remaining trackers.  This 

information is stored in the (trkr) vector.   

Next, the outer loop for the Monte Carlo runs is set up, and all applicable 

variables and matrices become initialized.  This way, for repeated runs, the variables are 

reset to null or to their initial values at each iteration of the loop.  The generation of truth 

data begins with extracting the initial positions using the NONMAN and MANMATRIX 

functions.  The maneuvering and non-maneuvering targets are kept separate for 

generating the truth data, and then regrouped for generating the noisy measurements.  

The initial position and velocity vectors look like [x1;vx1;y1;vy1, x2;vx2;y2;vy2, .......] 



 

120  
 

 

for each target.  In order to generate the second measurement, the TIMESTEP function is 

called to iterate the target motion in time.   

The MANMATRIX function has an additional task that is not part of the 

NONMAN function.  MANMATRIX also returns the (mantime) matrix that contains the 

column vectors of maneuver times for the maneuvering targets only.  However, for the 

first two measurements, straight line motion for all targets is assumed.  The truth data is 

then stored in the (posout) matrix as x-y pairs stacked for each target.  A new column of 

x-y pairs for each target is created with each time step.   

The first two measurements are required for track initialization.  This is a major 

assumption of this simulation.  All tracks are initialized with a Least Squares Estimation 

track initialization, regardless of the tracker used in the simulation.  Trackers that use 

Kalman predictions and updates require an initial state and covariance for the tracker to 

work.  The INIT function is called for each sensor of the sensor platform.  This is where 

the multi-dimensional capability of MATLAB is first exercised. While the 2-D form of 

the matrix is needed for the calculations, storage of the multiple sensor data is 

accomplished by adding a “page” to the 2-D matrix for each additional sensor.  This 

gives the matrices depth, or a third dimension.  Storing this data separately is necessary 

because each sensor has a unique accuracy.  The SETZTRUE function is used to 

conveniently stack the z-true data for storage and plotting.  The noisy measurements are 

also saved for error comparisons after the tracker has updated the state (zout).   

At this point, the simulation is completely initialized and ready to start looping 

through the main body of the program.  For each iteration, the following actions occur:   
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1.  Truth data is generated for non-maneuvering targets with TIMESTEP. 

2.  A test is performed for each maneuvering target to see if the target is in 

straight line motion or in a maneuvering state.  If the target is in SLM, the straight line 

(F) matrix is sent to TIMESTEP.  If the target is in a tuning state (based on ‘mantime’ 

matrix times), the (Fturn) matrix is sent to TIMESTEP for proper modeling of the turn.   

3.  All of the truth data is combined and sent to the MEAS function for generation 

of noisy measurement data.  The error and the error covariance is returned for each target 

and for each sensor, which add to the 3-D matrices already generated by INIT.   

4.  The noisy measurement data, error covariance, initial state and initial state 

covariance are all sent to the applicable tracker for each sensor.  This data is all kept 

separate for plotting the individual solutions and errors.   

5.  Once all the data and tracking solutions have been calculated for the entire 

simulation run, the LSECALC function determines the Least Square Error between the 

tracker state and the truth position of each point and for each sensor.  If multiple Monte 

Carlo runs are conducted, the results are stored and averaged over the number of runs.  

This averaged data is used for plotting the final results.  An additional option is allowed 

in the code for plotting the state solutions at each loop iteration (SIMPLOT).  The 

functions TRACKPLOT and ERRORPLOTS are used to plot the results.    

When running fusim, the track plot will look similar to the results in Figure 35.   
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Figure 35.  Representative PPI. 

  

[A,A1,delta,t,nloops,nsamples,Spi,flag,ownsens] = start(dumb); 

The START function is called first by FUSIM to set up the initial variables 

needed for the simulation.  The START function reads the START.MAT file to collect 

timing information about the simulation, initiates the matrices of targets, and initiates 

other needed matrices (F,H).  The notable functions and variables of the start function are 

described in the following sections. 

The START function begins by reading the START.MAT file to initialize the 

timing variables and other user-defined variables.  The START.MAT information 
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initializes variables of the (simstart) vector in the following format:  [t(simtime), nloops, 

deltatime, DLRP, placeholder, tracker selection 1-4].  The total simulation time (t) is 

input in minutes and then converted to seconds.  The number of loops (nloops) 

determines the total number of Monte Carlo runs to be executed by the program.  A large 

number of runs can add significantly to the execution time required by the simulation.   

The time variable (deltatime) is the update rate of the sensors given in tenths of 

minutes.  For example, if 0.1 is used, 0.1*60 = 6 seconds.  In other words, the update rate 

of the primary sensor is every 6 seconds.  The variable (DLRP) is used to center the 

entire simulation at some location on the earth.  When entered in the simulation, (DLRP) 

becomes the origin of the X-Y coordinate grid.  Note:  The (DLRP) variable is not used 

in this version of fusim.  The tracker selection is used in a later function.  Now that the 

total simulation time and the time step (delta) are known, the total number of samples 

(nsamples) can be calculated.  The variable (nsamples) is an integer value that provides 

FUSIM with the total number of samples or measurements to be taken for each of the 

targets.   

Next, the TARDAT.MAT file is read into the (A1) matrix.  By examining the 

elements of the (A1) matrix, a determination is made whether the target is maneuvering 

or not.  This information will be used later for setting up the truth data.  As the maneuver 

test is performed, the targets are separated into the (A) matrix (maneuvering targets) and 

the (A1) matrix (non-maneuvering targets).  These two matrices contain all the truth data 

about all the targets as input by the user.  The truth elements of the sensor platform and of 
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the target vectors are nearly the same, as shown below and further described in Appendix 

B: 

Example sensor platform vector (format of TARDAT.MAT data): 

[N,365600,W,0761700,110,175,25000,A/C,e2c,radar1,iff,esm,ir,comm,legtime,L/
R,turn time] 

1:  North or South Latitude N = 0, S = 1 (not utilized in this version) 

2:  X position, with 0/0 as the origin (feet)  

3:  East or West Longitude: W = 0, E = 1 (not utilized in this version) 

4:  Y position, with 0/0 as the origin (feet) 

5:  Course in degrees 

6:  Speed in Knots 

7:  Altitude in feet (not utilized in this version) 

8:  Type:  1 = Aircraft, 2 = ship, 3 = ? (not utilized in this version) 

9:  Name 1 = E-2C, 2 = ? (not utilized in this version) 

10: Sensor 1 (sensor platform) / Emitter 1 (target) 

11: Sensor 2 (sensor platform) / Emitter 2 (target) 

12: Sensor 3 (sensor platform) / Emitter 3 (target) 

13: Sensor 4 (sensor platform) / Emitter 4 (target) 

14: communications type (not utilized in this version) 

15:  Leg Time - how long the legs of the orbit will be (if turning) 

16:  Turns - Left or Right, 0 = Left Turn, 1 = Right Turn 

17:  Turn Time - how long the turns will be (if turning)  

Three other functions are initialized for the sensor platform.  The sensor platform 

position (Spi) is initialized for use later in the program, flag is set to 1 if the sensor 

platform is maneuvering, and the vector of sensor types (ownsens) is initialized with the 

user-defined selections of sensor types.  Up to 4 different sensors can be selected for the 

sensor platform.   
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Two other matrices are initialized in the START function, the (H) matrix and the 

(F) matrix.  These are declared as global variables because they are used by several other 

functions in the FUSIM program.  The (H) matrix is used simply to extract the x-y 

position variables from the state vector.  The (F) matrix is used to increment in time a 

state vector for predictions and for establishing truth data when targets are in straight-line 

motion.   

 

 [Fturn,B] = fturn(A,delta);   

The function FTURN is called next by the FUSIM control function to set up the 

needed matrices for maneuvering targets.  An fturn matrix is used by each maneuvering 

target to model the target motion when the target is in a turning state.  The full (Fturn) 

matrix is returned with the stacked 4x4 (Fturn) sub-matrices for the maneuvering targets 

only.  [Fturn(ownship);Fturn(target1);Fturn(target2);....].  The (B) matrix is set up by 

determining whether the target is turning left or right, extracting and converting the 

heading and speed information, and the initial truth state vector for each maneuvering 

target. The data for target 1 (usually ownship) occupies column 1, target 2 is in column 2 

and so on for the total number of maneuvering targets.  

 

function trkr = setuptrackers(ns) 

The function SETUPTRACKER uses the input value (ns) to set up a vector of 

sensor types.  The value (ns) is based on the number of sensor types selected by the user.  
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The only tracker that the user can select is the primary tracking function desired for the 

primary sensor.  The rest of the sensors are arbitrarily assigned a tracking function.  

Currently, the trackers are assigned as follows:   

1 = Probabilistic Data Association Filter 

2 = Interacting multiple Models 

3 = Kalman  

4 = Const Gain Kalman  

 

function [mantime,xim] = manmatrix(A,B,t) 

The function MANMATRIX constructs the Maneuver Time Matrix based on the 

size of the largest maneuver vector.  First, the function extracts the maneuver times from 

the (A) matrix and converts the user-defined times to seconds.  Using the leg and turn 

times, the maneuver vectors are then created with the MANEUVERTIME function, as 

discussed in the next section.  The maneuver times for target 1 occupies the first column, 

the times for target 2 occupy the second column, and so on.  If the vectors are different in 

length, the number of rows in the maneuver matrix is based on the longest vector.  The 

rest of the matrix is filled in with zeros.  The MANMATRIX function also returns the 

initial truth position (xim) for the maneuvering targets.  
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function [mt] = maneuvertime(t,legt,turnt) 

The function MANEUVERTIME is called for each target that is maneuvering.  

Based on the total time of the simulation and the leg and turn times of the target, the 

function creates a vector of cumulative maneuver times.  The first time element in the 

vector will always be the first leg time.  The next time will be the length of time required 

to complete the first turn added to the first leg time.  The target uses the straight-line 

motion model (F) for the first leg, and the turning model (Fturn) during the time that the 

target is turning.  After completion of the turn, the target returns to SLM until the next 

turn time is reached.  As an example, if the first leg is 600 seconds, the target will use 

SLM model for 600 seconds.  If the turn takes 30 seconds to complete, the turn model 

will be used from time 601 to time 630.  At time 631, the target returns to SLM until time 

631 + 600 or 1231 seconds.  This target motion model continues until the total time of the 

simulation is reached.    

 

function [xin] = nonman(A1) 

The non-maneuvering targets are initialized using the NONMAN function.  This 

function extracts the position and velocity data from the (A1) matrix of non-maneuvering 

targets, converts the speed to feet per second, and breaks down the velocity into x and y 

components based on the heading.  This also includes fixed targets that have no motion 

associated with them.  The state vector is constructed for each target and stored as a 

column of the non-maneuvering matrix.   
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function [spxi] = ownxi(ownship) 

This function simply extracts the initial position and velocity data from the 

ownship initial parameters vector (as input by the user).   

 

function [Q,P,R,derror,xhat,zret] = init(allx1,allx2,delta,Spi,Sp,sensor) 

The INIT function is one of the most important functions in the simulation.  This 

function performs nearly all the same operations as the main FUSIM loop.  Since all the 

trackers used in this simulation require some form of initialization, a simple Least 

Squares Estimation initialization is performed for each.  Using the least squares 

initialization for all the trackers is a bit of a simplification, but the simulation is much 

more flexible.  Nearly any tracker that uses a Kalman type prediction and update can be 

plugged into this simulation and evaluated.  The INIT function uses the first two noisy 

measurements (assuming SLM) to initialize the Kalman filter state and the prediction 

covariance.  Using the initial truth data provided by the user, the function POLE2CART 

is called with the applicable sensor range and bearing error, and the error covariance 

matrix.  Returned from POLE2CART are the noisy measurement, the measurement error, 

and the new error covariance (based on the measurement).  More information on 

POLE2CART is provided in the following section.   

Since two measurements are required for the initialization, the targets are stepped 

through time for one time increment using the TIMESTEP function.  The initialization 

assumes SLM for all targets.  The truth data is stored for later output, and POLE2CART 
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is called again to create a noisy measurement for each target based on the sensor errors.  

With the 2 noisy measurements, sufficient data exists for the least squares initialization.  

The data that are returned include the noisy measurements (zret), the initial states (xhat), 

the error covariance (R), the prediction covariance (P), the measurement errors (derror), 

and the plant noise (Q) matrix.   

 

function [z,R,disterror] = pole2cart(ztrue,Sp,sr,sb,Sv) 

The POLE2CART function simulates the errors inherent within a sensor by 

adding error to the truth position and returning a new noisy measurement.  First, the x-y 

truth data is converted to polar coordinates based on the sensor position and the target 

position.  Next, the range and bearing errors are multiplied by a randomly generated 

number to simulate Gaussian distributed white noise, and then added to the true range 

and bearing.  The new range and bearing are then converted back to Cartesian 

coordinates and the error covariance matrix is constructed.  The error between the noisy 

measurement and the truth position is measured and returned with the noisy position and 

error covariance matrix.  Using POLE2CART for the measurements creates a slight bias 

error that is ignored for this simulation [Ref. 1].   
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function [spP,spR,sperror,spstate,spmeas] = spinit(spxi,spx2,Q,D) 

The SPINIT function provides the initial gain and state estimation for ownship 

navigation, assuming straight line motion.  The initialization is precisely the same as the 

target track initializations.   

 

function ztrue = setztrue(m,n,xin,xim) 

The SETZTRUE function extracts the true x-y data from the truth state vector.  

This is performed for both maneuvering and non-maneuvering targets.  The data is stored 

in the (ztrue) vector and returned to the FUSIM function for storage in the posout matrix.   

 

function [sigr,sigb,Sv] = senserror(sensor) 

The SENSERROR function matches the type of sensor defined by the user for the 

sensor platform to the corresponding errors.  For each sensor on the sensor platform, the 

range and bearing errors are returned along with the sensor variance matrix.  For 

simplicity, all sensors are treated the same.  The errors are given in range and bearing, 

allowing use of the POLE2CART function for all sensor measurements.  This is not the 

most accurate representation of sensors, however, treating the sensors the same allows 

more flexibility in the simulation.  The following list describes the sensor type and the 

errors used for the simulation: 
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Case Sensor Type σrange, ft σbearing, rad Sensor 
Variance 

1 Airborne Surveillance Radar 100  .005 











2

2

0
0

bearing

range

σ
σ

 

2 Surface Surveillance Radar 20  .0001 same as above 

3 Airborne Fighter Radar 20 .001 “ 

4 Surface Fire Control Radar 10 .0001 “ 

5 Non - Cooperative Target 
Recognition 

20 .001 “ 

6 Eastern Identification Friend or Foe 50 .01 “ 

7 IFF Interrogate 50 .001 “ 

8 IFF Reply  20 .001 “ 

9 Airborne Electronic Surveillance 
Measures (ESM) 

500 .01 “ 

10 Surface ESM 300 .01 “ 

11 Infrared Detector 6000 .0001 “ 

12 Ownship Navigation 10 .00001 “ 

13 Data Link Tracking Errors 200 .01 “ 
Table A-1.  Included Sensor Types and Associated Errors. 

 

function [xnew] = timestep(F,x) 

The TIMESTEP function receives the time increment matrix and returns the new 

state vector for a moving target.  If the target is in SLM, the (F) matrix is used.  If the 

target is turning, the (Fturn) matrix is sent.  The TIMESTEP function simply multiplies 

the step matrix and the state vector.   

 

[spxtrue,spmeas,sper,spR,in]=spitmeas(sensor,spx2,spman,ownfturn,simt,in) 

The SPITMEAS function is used to iterate the sensor platform position (Sp) and 

to calculate the noisy measurement.  First, a test is conducted to determine if the sensor 
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platform is a maneuvering condition.  If maneuvering, the (ownfturn) matrix is used to 

update the truth position of the platform.  Assuming that the origin of the navigation 

solution is ownship cg, the previous value of Sp is used as the origin for the call to 

POLE2CART.   

 

function [R,zret,derror] = meas(sensor,zre,Sp) 

The MEAS function receives the x-y truth data as well as the sensor type and 

sensor position.  A function call is made to the SENSERROR function to get the sensor 

errors for the current sensor.  These errors are sent to the POLE2CART function for 

calculation of the noisy measurements.  The function then stacks the noisy measurements 

in a vector (zret) and stacks the measurement covariance matrices (R) for return to the 

main program.  This process is repeated for all targets and for each sensor type.  

  

function [xhat33,count] = tracker(Q1,P1,R1,xhat1,z1,count,k,trkr) 

A different tracker is called for every sensor that has been selected for the sensor 

platform.  The TRACKER function is sent all the applicable covariance data, the 

previous state, the measurement, and the tracker type.  To call the appropriate tracker, a 

switch-case statement is used with identical argument lists for all available trackers.  The 

tracker types are listed with the SETUPTRACKER function.  
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function [xhat33,count] = pdaf(Q,P,R,xhat,zret,count) 

function [xhat33,count] = immtrk(Q,P,R,xhat,zret,count) 

function [xhat33,count] = kalman(Q,P,R,xhat,zret,count) 

function [xhat33,count] = constGKF(Q,P,R,xhat,zret,count) 

The PDAF function is the Probabilistic Data Association Filter, which can be 

used where clutter is present in the target tracking gate.  The IMMTRK function contains 

the code for the Interacting Multiple Models tracker.  All the needed variables are defined 

and initialized the first time the function is called.  The variables that need to be saved 

from iteration to iteration are simply declared as global variables within the tracking 

function.  This way, the variables are not destroyed each time the function returns the 

updated state.  The MATLAB code is included in Appendix B.  The function calls for the 

Kalman filter and the constant gain Kalman filter are identical.   

 

function [linkdat,lstate] = linkreport(xhat,simt) 

This function creates a simulated data link report for the targets and allows for 

addition of attribute data, such as Identification Friend or Foe data.  The format of the 

report is very flexible and can be changed as desired by user to suit individual needs.    

[x,y,velocity,heading,time,iff1,iff2,iff3,iff4,iffc,emitter1,emitter2,ID,reportingunit] 

Within the function, random noise is added to the to velocity and position to 

simulate navigation errors between platforms.  Also, to simulate DLRP/gridlock errors, a 
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fixed value of bias error is added to the position.  The link report is updated every 5 delta-

time cycles.   

 

function simplot(mn,ns,xhat) 

The SIMPLOT function allows plotting of the track data as the program is 

executing.  If multiple Monte Carlo runs are used in execution of the simulation, this 

function is not recommended since execution is slowed dramatically.  

 

function LSE = lsecalc(mn,state,posout,nsamples) 

The function LSECALC calculates the Least Square Error between the state 

vectors and the truth positions.  This data is stored for each target and each sensor at 

every time step.   

 

function handl = errorplots(mn,ns,nsamples,delta,merror,LSmean) 

The ERRORPLOTS function plots all the measurement error and Least Squares 

error for every target and sensor vs. time.   
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function hand = trackplot(mn,ns,posout,zoutmean,statemean) 

The TRACKPLOT function plots the true position, the noisy measurements, and 

the track states for each track and each sensor.  Also provided is a single plot for 

comparison of all sensors for each of the tracks.   

 

Running the Fusim Simulation 

To run fusim:  Type fusim at the command line and use the default simulation 

time, sensor types, and targets.  To change the simulation time, open the START.MAT 

file and change the first element to the desired simulation time (in minutes).  The second 

element is the number of runs.  The number of simulations should be set to 1 if using the 

SIMPLOT command in FUSIM.  If numerous runs are desired for smoothing of the 

randomly generated error data, set the 2nd element to the desired number (recognizing that 

simulation time increases dramatically).  To change the timestep, delta, set the third 

element to the desired delta in minutes.   

To change the primary tracker from PDA to IMM or Kalman or Constant Gain 

Kalman, change the final element (1) to a (2), (3), or (4) respectively.  The assignment of 

trackers to other sensors will fall in the order given in the SETUPTRACKERS function.  

To change the sensor types in the sensor platform, open the TARDAT.MAT file and 

change elements 10-13 to the desired sensor types as described in the SENSERROR 

function.  Finally, any number of targets and target types can be entered in the same 

format as described previously. 
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APPENDIX B.  FUSIM PROGRAM MATLAB CODE 
 

FUSIM PROGRAM MATLAB CODE 
 

NAME   Fusim 

INPUT None 

OUTPUT  None 

PURPOSE The fusim program is the main simulation file.  This file initializes all variables, creates 
the simulation truth data, calls the measurement function, calls the trackers, calls the data 
link simulator, and calls the plotting functions.   

clear all; 

format long; 

*********************************************************************** 

global F H Sp; 

dumb = 0; 

[A,A1,delta,t,nloops,nsamples,Spi,flag,ownsens] = start(dumb); 

%Determine if ownship platform (the sensor platform) is maneuvering and set up for 

%  separate tracking 

spxi = []; 

if flag == 1 

%  Ownship is maneuvering 

ownship = A(1,:); 

A(1,:) = []; 

[ownfturn,ownB] = fturn(ownship,delta); 

[spman,spxi] = manmatrix(ownship,ownB,t); 

elseif flag == 0 

%  Ownship is not maneuvering 

ownship = A1(1,:); 

A1(1,:) = []; 

spxi = nonman(ownship); 

end 

 

[Fturn,B] = fturn(A,delta); 

%  Fturn comes back with stacked Fturn matrices [Ft1;Ft2;Ft3;....] 
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%  B comes back with all the other data stacked:  [turng;hdg;speed;xi  turng;hdg;speed;xi,...] 

%  The total number of targets will always be n + m, or mn  

[n,b] = size(A1); 

[m,b] = size(A); 

mn = m+n; 

nsens = []; 

for k = 1:max(size(ownsens)) 

    if (ownsens(k) >= 1) 

        nsens = [nsens,ownsens(k)]; 

    end 

end 

ns = max(size(nsens));  %  This gives the total number of sensors on the sensor platform. 

trkr = setuptrackers(ns);  %  Returns a vector with the desired trackers identified for %tracker.m     

%  Try getting an average for a number of runs: 

for kk = 1:nloops 

    Sp = Spi;    %  Initializes the sensor position 

    simt = 0.0;  %  Simt keeps track of the simulation time for the maneuvering targets 

    posout = []; sppos = []; 

    ztrue = []; 

    zout = []; spzout = []; 

    state = []; spstate = []; 

    error = []; sperror = []; 

    xin = []; 

    x2n = []; spx2 = []; 

    xim = []; 

    x2m = []; 

    xy = []; 

    xhat1 = []; 

    R1 = []; 

    z1 = []; 

    Q1 = []; 

    P1 = []; 

    derror1 = []; 

    count = 1; 

    linkout = []; 
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    LSerror = []; 

%  FIRST TARGET TIMESTEP FOR INITIALIZATION: 

%  Call the function 'nonman' to get the non-maneuvering target data in the same format 

%  as the maneuvering target:  xi will be a matrix of [x;vx;y;vy;'s.......] side by side 

%  mantime contains the column vectors of maneuver times for the maneuvering targets %only.      

    

    sppos = [sppos,H*spxi]; 

    spx2 = F*spxi; 

    sppos = [sppos,H*spx2]; 

    if n > 0 

        xin = nonman(A1); 

        x2n = zeros(size(xin)); 

        for k = 1:n 

            x2n(:,k) = timestep(F,xin(:,k)); 

            ztrue = [ztrue;H*xin(:,k)]; 

        end 

    end 

    %  Get the xi's, which will be used for truth data [x;vx;y;vy], xim (maneuvering) 

    if m > 0 

        %  The function 'manmatrix' creates the matrix of maneuver times 

        [mantime,xim] = manmatrix(A,B,t); 

        x2m = zeros(size(xim)); 

        for k = 1:m 

           ztrue = [ztrue;H*xim(:,k)];  % stacks the ztrues to make a 2*N x 1 vector 

x2m(:,k) = timestep(F,xim(:,k)); 

        end 

        %  Update posout matrix with the stacked ztrues:   

        %[x1;y1;x2;y2;}non-maneuvering x3;y3;x4;y4;...maneuvering] 

        posout = [posout,ztrue]; 

     end 

%       INITIALIZATION:  Assume all targets are moving in a straight line! 

[rr,ll] = size(mantime);    

simt = simt + delta; 

%Sp = H*x2m(:,1);  %  ASSUMES THAT THE SENSOR PLATFORM IS THE FIRST 
ELEMENT OF M-SET 

allx1 = [xin,xim]; 
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allx2 = [x2n,x2m]; 

%  First, grab the sensor information to get the applicable errors: 

%  Perform a Kalman filter initialization for every track - assume straight line! 

ztemp = []; 

for k = 1:ns 

    ser = nsens(k); 

    [Q,P,R,D,derror,xhat,zret] = init(allx1,allx2,delta,Spi,Sp,ser); 

    xhat1(:,:,k) = xhat; 

    R1(:,:,k) = R; 

    z1(:,:,k) = zret; 

    % For multiple sensors, the z's are stacked, not 2-D to begin with 

    %  [(tgt1,sens1);(tgt2,sens1);.....(tgt1,sens2);(tgt2,sens2);...] 

    Q1(:,:,k) = Q; 

    P1(:,:,k) = P; 

    derror1(:,:,k) = derror; %  Same for the errors, one number per point 

    %  [(tgt1,sens1);(tgt2,sens1);.....(tgt1,sens2);(tgt2,sens2);...] 

end 

%  Call init for ownship: 

[spP,spR,sper,Spst,spmeas] = spinit(spxi,spx2,Q,D); 

 

% Create the noisy measurements matrix for output: 

spzout = [spzout,spmeas]; 

zout = [zout,z1];  %  Noisy z measurements z1;z2......, and ns deep (1 page for each sensor) 

z1 = []; 

state = [state,xhat1]; 

spstate = [spstate,Spst]; 

Sptrue = H*spx2;  %  true x-y for ownship 

Sp = H*Spst;      %  STATE predicted x-y for ownship 

error = [error,derror1]; 

sperror = [sperror,sper]; 

derror1 = []; 

%  Set X equal to the latest position.      

xin = x2n; 

xim = x2m; 

ztrue = setztrue(m,n,xin,xim); 
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posout = [posout,ztrue]; 

%  indx will be used to keep track of where the targets are in their maneuver cycle: 

indx = ones(1,m); 

in = 1; 

   for ii = 3:nsamples 

        

       %  Iterate the targets: 

       %  NON-MANEUVERING TARGETS, A1, xin,  

       if n > 0 

           for k = 1:n 

               xin(:,k) = timestep(F,xin(:,k)); 

           end 

       end 

        

       %  MANEUVERING TARGETS, A, xim, xm 

   if m > 0 

       index = 1; 

       for k = 1:m  %  must loop thru for each target before moving on 

           %  Check for zeros here? 

           if indx(k) < rr  %  Executes every time 

               LEG = mantime(indx(k),k); 

               TURN = mantime(indx(k)+1,k); 

           end    

           if indx(k) == rr 

               if mod(rr,2)==0 

                   LEG = mantime(indx(k),k); 

                   TURN = mantime(indx(k)+1,k); 

               elseif mod(rr,2) == 1 

                   LEG = mantime(indx(k),k); 

                   TURN = LEG+1; 

               end 

           end 

                if ( (simt <= LEG) | (simt > TURN) | (TURN == 0) ) 

                    xim(:,k) = timestep(F,xim(:,k));  %   Use non-maneuvering F if tgt is SLM 

                elseif (simt > LEG) & (simt <= TURN) | (LEG == 0) %  What to do if turn is a zero?  or 
Leg? 
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                    xim(:,k) = timestep(Fturn(index:(index+3),:),xim(:,k)); 

                end 

             %  Reset LEG & TURN as needed for each target: 

                if simt > TURN & TURN > 0 & indx(k) < rr 

                    indx(k) = indx(k) + 2; 

                end 

            

           index = index+4; 

       end 

   end 

    

      %********************      MEASUREMENT      *********************** 

       ztrue = setztrue(m,n,xin,xim); 

       posout = [posout,ztrue]; 

       zre = []; 

       zre = reshape(ztrue,2,mn); 

        

       %  SENSOR PLATFORM MEASUREMENT AND TRACKING (NAV solution): 

       sensor = 12; 

       if flag == 0 

           spxtrue = timestep(F,spx2); 

           [spR,spmeas,sper] = meas(sensor,spxtrue,[0;0]); 

       elseif flag == 1 

           [spxtrue,spmeas,sper,spR,in] = spitmeas(sensor,spx2,spman,ownfturn,simt,in); 

       end 

       [Spst,count] = kalman1(Q,spP,spR,Spst,spmeas,count);  %  Calc sensor position state 

       spx2 = spxtrue; 

       sppos = [sppos,H*spxtrue]; 

       spstate = [spstate,Spst]; 

       sperror = [sperror,sper]; 

       spzout = [spzout,spmeas]; 

       Sp = H*Spst;  %  The x-y position of the sensor platform (nav solution) 

        

       %  TARGET MEASUREMENT (for each sensor) 

         for k = 1:ns 
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            sensor = nsens(k);  %  Sends the sensor type (numerical) to the measurement function 

            zret = []; 

            [R,zret,derror] = meas(sensor,zre,Sp); 

            R1(:,:,k) = R; 

            z1(:,:,k) = zret; 

            derror1(:,:,k) = derror; 

         end 

      error = [error,derror1];     

      % Create the noisy measurements matrix for output: 

      zout = [zout,z1]; 

      %  zret are the measurement inputs for the tracker  

      %  Xhat is the matrix of updated states 

       

      %                 *******************  TRACKER  ********************** 

      for k = 1:ns 

          [xhat33,count] = tracker(Q1(:,:,k),P1(:,:,k),R1(:,:,k),xhat1(:,:,k),z1(:,:,k),count,trkr(k)); 

          xhat1(:,:,k) = xhat33; 

      end 

      state = [state,xhat1]; 

        

      %              **************    DATA LINK FUNCTION     ************************* 

 

      %  The current sensor state for surveillance radar is used as a starting point, we're  

      %  getting farther away from the truth with link reports. Simulate by adding more error  

      %  Also, this function is only called every 5 loops (3 seconds right now). 

       

      if mod(ii,5) == 0 

          [linkvector,lstate] = linkreport(xhat1(:,:,1),simt); 

          %  lstate is simply the state vector for the data link report 

          %  linkstate = [linkstate,lstate]; 

          %  lrep is in the form 
[x;y;vel;IFF1;IFF2;IFF3;IFF4;IFFC;emitters;time;reportingunit,x2;.....] 

          linkout = [linkout,linkvector]; 

      end 

       

      count = count + 1; 
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      simt = simt + delta;       

      %  SIMPLOT function for plotting on the fly 

      %  could use this for plotting the fused result 

      %simplot(mn,ns,xhat1,Spst); 

   end 

    %   ****                CALCULATE THE LEAST SQUARE ERROR:    

    for k = 1:ns 

        LSerr = lsecalc(mn,state(:,:,k),posout,nsamples); 

        LSerror(:,:,k) = LSerr; 

    end 

 

    if kk == 1, 

      merror = error; 

      zoutmean = zout; 

      statemean = state; 

      spstatemean = spstate; 

      sperrormean = sperror; 

      spmeasmean = spzout; 

      linkmean = linkout;   

      LSmean = LSerror;  

    else 

      merror = merror + error; 

      zoutmean = zoutmean + zout; 

      statemean = statemean + state; 

      spstatemean = spstatemean + spstate; 

      sperrormean = sperrormean + sperror; 

      spmeasmean = spmeasmean + spzout; 

      linkmean = linkmean + linkout; 

      LSmean = LSmean + LSerror; 

    end 

    

end 

 

merror = merror/nloops; 

zoutmean = zoutmean/nloops; 
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statemean = statemean/nloops; 

spstatemean = spstatemean/nloops; 

sperrormean = sperrormean/nloops; 

spmeasmean = spmeasmean/nloops; 

linkmean = linkmean/nloops; 

LSmean = LSmean/nloops; 

% 

hand = trackplot(posout,zoutmean,statemean,sppos,spstatemean,linkmean); 

handl = errorplots(delta,merror,LSmean,trkr); 

 

 

NAME  start 

INPUT  a dummy variable 

OUTPUT  A,A1,delta, t,nloops,nsamples,Spi,flag,ownsens 

PURPOSE The start function reads the start.mat file to collect timing information about the 
simulation, initiates the matrices of targets, and initiates other needed matrices (F,H) 

function [A,A1,delta,t,nloops,nsamples,Spi,flag,ownsens] = start(dumb) 

%  OUTPUT VARIABLES: 

%  A        Maneuvering target matrix 

%  A1       Non-maneuvering target matrix 

%  delta    delta time 

%  t        total simulation time in seconds 

%  nloops   number of simulation runs (for error analysis) 

%  nsamples number of time steps in the simulation run 

%  Spi      Initial position of the sensor platform 

%  flag     Indicator of whether or not the sensor platform is maneuvering 

%  ownsens  Vector of ownship sensor types 

global H F; 

%  START READS THE SIMULATION RUN PARAMETERS 

  simstart = textread('start.mat'); 

%  simstart returns in the following fashion:  [t(simtime), nloops, deltatime, DLRP,  

%       placeholder, tracker selection 1-4] 

  t = simstart(1)*60; %  To put time into seconds for the simulation 

  nloops = simstart(2); 

%   

%t = simtime(dumb); 
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%t = t*60;  %  to put time in seconds  

%  determine the time increment and the total number of samples 

uprate = simstart(3); 

[delta,nsamples] = deltatime(t,uprate); 

%  Start by getting file data on all targets:  A1 returns as a matrix of targets - N x 17 

A1 = textread('tardat.mat'); 

A = []; 

Spi = [A1(1,2);A1(1,4)];  %  First target of A1 is always ownship!! (the sensor platform) 

ownsens = [A1(1,10) A1(1,11) A1(1,12) A1(1,13)]; 

%  Now, determine if the target is maneuvering or not by checking item 17 

%   and creating a new matrix, A and deleting the maneuvering tgt rows from A1: 

[d,e] = size(A1); 

Atemp = []; 

for i = 1:d 

    if  A1(i,17) > 0 

        A = [A;A1(i,:)]; 

        if i == 1 

            flag = 1; 

        end 

    elseif A1(i,17) == 0 

        Atemp = [Atemp;A1(i,:)]; 

    end 

end 

A1 = []; 

A1 = Atemp; 

%  Now A contains the targets that are maneuvering only, for use by the 'fturn' function 

%  Stack the splat data on A.  Sensor platform is always the first row (or column in fturn) 

%  If the sensor platform is not maneuvering, the splat info gets added to A1 

H = [1,0,0,0; 

   0,0,1,0];  

F = [1, delta, 0, 0; 

   0, 1, 0, 0; 

   0, 0, 1, delta; 

   0, 0, 0, 1]; 
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NAME fturn 

INPUT  A, delta 

OUTPUT  Fturn, B 

PURPOSE The fturn function reads the start.mat file to collect timing information about the 
simulation, initiates the matrices of targets, and initiates other needed matrices (F,H) 

function [Fturn,B] = fturn(A,delta) 

%  This function will create a matrix containing submatrices of Fturn's for each target  

%  platform, including the sensor platform, if maneuvering.   

B = []; 

Btemp = []; 

Fturn = []; 

%  Initialize state vector of positions and velocities based on input values: 

[nn,b] = size(A); 

for jj = 1:nn 

    if A(jj,16) == 0 

        turng = 1.1; 

    elseif A(jj,16) == 1 

        turng = -1.1; 

    end 

    hdg = A(jj,5)*pi/180.0; 

    speed = A(jj,6)*6076.0/3600.0;  % speed in feet/sec 

    xi = [A(jj,2);speed*sin(hdg);A(jj,4);speed*cos(hdg)]; 

    Btemp = [turng;hdg;speed;xi]; 

    g = turng; 

    %  Turn omega calculation 

    w = g*32.174/speed; 

    r = w*delta; 

    s = sin(r); 

    c = cos(r); 

    Ft = [1,(s/w),0,((1-c)/w); 

        0,c,0,-s; 

        0,((1-c)/w),1,(s/w); 

        0,s,0,c]; 

        Fturn = [Fturn;Ft]; 

    B = [B,Btemp]; 
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end 

 

NAME setuptrackers 

INPUT  ns 

OUTPUT  trkr 

PURPOSE This function sets up the vector of desired trackers by reading the primary requested 
tracker and then assigning another tracker for the other sensors.   

function trkr = setuptrackers(ns) 

%  1 = PDAF 

%  2 = IMM 

%  3 = Kalman filter 

%  4 = Const Gain Kalman  

%  5 = Kalman filter #2 (for navigation) 

trkr = []; 

simstart = textread('start.mat'); 

primarytracker = simstart(6);  %  Reads the desired tracker for the primary radar tracking 

for k = 1:ns 

    trkr = [trkr,primarytracker]; 

    if primarytracker == 1 

        temp = 2; 

    elseif primarytracker == 2 

        temp = 3; 

    elseif primarytracker == 3 

        temp = 4; 

    elseif primarytracker == 4 

        temp = 1; 

    end 

    primarytracker = temp; 

end 
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NAME manmatrix 

INPUT  A,B,t 

OUTPUT  mantime,xim 

PURPOSE This function sets up the Maneuver Time Matrix based on the size of the largest 
maneuver vector and calls the maneuvertime function with the needed info.  Based on the 
target vector and simulation time, determine the times for maneuvers and creates a vector 
to hold the cumulative times. For consistency, xim is returned, similar to the nonman 
function 

function [mantime,xim] = manmatrix(A,B,t) 

 time = t; 

[N,b] = size(A); 

mantime = []; 

mt = []; 

for kk = 1:N 

    legt = round(A(kk,15)*60); 

    turnt = round(A(kk,17)*60); 

    mt = maneuvertime(time,legt,turnt); 

    if kk == 1 

        r = length(mt); 

        longestr = r; 

        mantime = zeros(r,N); 

        mantime(:,1) = mt; 

    end 

    if kk > 1 

        s = length(mt); 

        r = longestr; 

        if s > r 

            mantime = [mantime;zeros((s-r),N)];  %  Adds s-r rows of zeros to mantime 

            mantime(:,kk) = mt; 

            longestr = s; 

        elseif s < r 

            mantime(:,kk) = [mt;zeros((r-s),1)]; 

        elseif s == r 

            mantime(:,kk) = mt; 

        end 
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    end 

     

end 

%  Peel off the x's 

xim = B(4:7,:); 

 

 

 

NAME  maneuvertime 

INPUT  t,legt,turnt 

OUTPUT  Mt 

PURPOSE This function determines if the target is maneuvering based on the times given and uses 
legt and turnt to calculate the time at which the target turns and stops turn: t enters the 
function in seconds, returns mt which is a vector of turn times for a maneuvering target, 
or else it returns an empty vector for a target that will not maneuver.  

 

function [mt] = maneuvertime(t,legt,turnt) 

 

mt = []; 

  

if turnt == 0 

    disp('Are you nuts?  This target is not maneuvering, Program Terminated!'); 

    return 

end 

totaltime = 0; 

step = 0; 

k = 1; 

while (totaltime < t) 

    if (mod(k,2) == 1) 

        step = legt; 

    elseif (mod(k,2) == 0) 

        step = turnt; 

    end 

    totaltime = totaltime + step; 

    if totaltime > t 

        totaltime = t; 
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    end 

    mt = [mt;totaltime]; 

    k = k + 1; 

end 

[m,o] = size(mt); 

    if (mod(m,2) == 1)  % if number of elements is odd 

        mt = [mt;0]; 

    end 

 

%  Returns the vector with the times for maneuver in the following format: 

%       [time at which turn1 executes; 

%           time to return to straight line 

%           time to start next turn 

%           .......] 

 

 

 

NAME nonman 

INPUT  A1 

OUTPUT  xin 

PURPOSE This function will extract the position and velocity data form the A1 matrix of non-
maneuvering targets.  Of course, this also includes fixed targets.  Initializes state vector 
of positions and velocities based on input values: 

 

function [xin] = nonman(A1) 

[N,b] = size(A1); 

xin = zeros(size(4,N)); 

for jj = 1:N 

    hdg = A1(jj,5)*pi/180.0; 

    if A1(jj,6) > 0 

        speed = A1(jj,6)*6076.0/3600.0;  % speed in feet/sec 

    elseif A1(jj,6) == 0 

        speed = 0; 

    end 

    xin(1:4,jj) = [A1(jj,2);speed*sin(hdg);A1(jj,4);speed*cos(hdg)]; 

end 
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NAME ownxi 

INPUT  ownship 

OUTPUT  Spxi 

PURPOSE This function extracts the position and velocity data from the ownship vector, initializes 
state vector of positions and velocities based on input values 

function [spxi] = ownxi(ownship) 

    hdg = ownship(5)*pi/180.0; 

    speed = ownship(6)*6076.0/3600.0;  % speed in feet/sec 

    spxi = [ownship(2);speed*sin(hdg);ownship(4);speed*cos(hdg)]; 

end 

 

 

 

NAME fturn 

INPUT  allx1,allx2,delta,Spi,Sp,sensor 

OUTPUT  Q,P,R,D,derror,xhat,zret 

PURPOSE This function provides the initial gain for use by any tracking filter, assumes straight line 
motion, and provides noisy measurements via pole2cart.   

function [Q,P,R,D,derror,xhat,zret] = init(allx1,allx2,delta,Spi,Sp,sensor) 

%  Input variables: 

%   H       extraction matrix 

%   F       Straight line motion matrix 

%   allx1      initial x positions 

%   allx2      incremented x positions 

%   delta   time delta 

%   Sensor  (vector) with applicable sensor for senserror  

% 

%  Output variables: 

%   Q       q matrix 

%   P       initial covariance 

%   derror  error matrix 

%   xhat    initial x hat matrix [x;vx;y;vy,x;vx;y;vy,.....]  one xhat for each target.   

%   zret    xy measurement vector (noisy) 

global H F; 

%  INITIALIZATION STEPS: 
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P = [];  %  Size of P will be 4*N x 4 (a 4x4 for each target) 

y = []; 

y2 = []; 

xhat = []; 

a = delta^2/2; 

b = delta^3/3; 

% time for some special purpose matrices: 

   Q = [b, a, 0, 0; 

      a, delta, 0, 0;  

      0, 0, b, a; 

      0, 0, a, delta]; 

   D = [1, 0, 0, 0; 

      1/delta, 0, -1/delta, 0; 

      0, 1, 0, 0; 

      0 1/delta, 0, -1/delta]; 

 

zret = []; 

ztemp = []; 

derror = []; 

derror2 = []; 

R = []; 

Rinit = []; 

sigr = 0.0; 

sigb = 0.0; 

Sv = []; 

[sigr,sigb,Sv] = senserror(sensor);   

[aa,bb] = size(allx1); 

%  Measurement 1:  Add noise to initial positions: 

    for h = 1:bb 

        %  Take a noisy measurement for all the targets (man and non-man)! 

        [zcart,R1,disterror] = pole2cart(H*allx1(:,h),Spi,sigr,sigb,Sv); 

        zret = [zret;zcart]; 

        y = [y,zcart]; 

        derror = [derror;disterror]; 

        Rinit = [Rinit;R1]; 
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    end 

%  Measurement 2: 

    for h = 1:bb 

        %  Take a noisy measurement! 

        [zcart,R2,disterror] = pole2cart(H*allx2(:,h),Sp,sigr,sigb,Sv); 

        ztemp = [ztemp;zcart]; 

        y2 = [y2,zcart]; 

        R = [R;R2]; 

        derror2 = [derror2;disterror]; 

    end 

     

zret = [zret,ztemp]; 

derror = [derror,derror2]; 

y = [y;y2]; 

ytemp = zeros(4,1); 

 

for h = 1:bb 

      %  vector yflipped contains the z's stacked z(2)/z(1) 

      ytemp = y(:,h); 

      yflipped = [ytemp(3);ytemp(4);ytemp(1);ytemp(2)]; 

      plantnoise = Rinit(2*h-1:2*h,:)+H*inv(F)*Q*(inv(F))'*H'; 

      cov = [R(2*h-1:2*h,:) zeros(2,2); 

         zeros(2,2) plantnoise]; 

      P1 = D*cov*D'; 

      P = [P;P1]; 

      xhat1 = D*yflipped; 

      xhat = [xhat;xhat1];  %  xhat is returned as a stacked vector of [x;vx;y;vy.......] 

end 
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NAME pole2cart 

INPUT  ztrue,sp,sr,sb,Sv 

OUTPUT  z,R,disterror 

PURPOSE This function processes the measurements from the sensors by converting to polar coords 
and adding the supplied error, then converting back to Cartesian.          

       function [z,R,disterror] = pole2cart(ztrue,sp,sr,sb,Sv) 

%  Input Arguments 

%  ztrue:   True target position 

%  sp:   True sensor position 

%  sr:  Range Standard deviation error 

%  sb:  Bearing standard deviation error 

%  sv:  sensor variance matrix (2x2) 

 

%  Outputs: 

%  z:   Output measurement with error in cart coords 

%  R:   Covariance Matrix of the meas in cart coords 

%  disterror: Distance error between meas and true posit 

 

%  Convert current position to polar coordinates and add sensor noise 

 

%  Generating a noisy measurement from the sensor: 

z = ztrue-sp;  %  position relative to the sensor 

r = sqrt(z(1)^2 + z(2)^2);  % Range from sensor 

b = atan2(z(2),z(1));     % Bearing from sensor 

r = r+sr*randn;     % Range + sensor noise 

b = b+sb*randn;     % Bearing + sensor noise 

 

%  Convert the measurement to Cartesian coordinates 

z = [r*cos(b);r*sin(b)]+sp; 

%  Now make the measurement covariance in Cartesian coords: 

fx = [cos(b) -r*sin(b);sin(b) r*cos(b)]; 

R = fx*Sv*fx'; 

%  Compute the measurement error in Cartesian coordinates 

ztilde = ztrue - z; 

disterror = sqrt(ztilde'*ztilde); 
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NAME spinit 

INPUT  spxi,spx2,Q,D 

OUTPUT  spP,spR,sperror,spstate,spmeas 

PURPOSE This function provides the initial gain and state estimation for ownship navigation, 
assumes straight line motion, and provides noisy measurements via pole2cart.   

function [spP,spR,sperror,spstate,spmeas] = spinit(spxi,spx2,Q,D) 

%  Input variables: 

%   spx1      initial x positions 

%   spx2      incremented x positions 

%   Q         Q matrix 

%   D         D matrix 

%  Output variables: 

%   spP         initial covariance 

%   spR         sensor error covariance 

%   sperror     error matrix 

%   spstate     initial xhat matrix [x;vx;y;vy,x;vx;y;vy,.....]  one xhat for each target.   

%   spmeas      noisy platform measurements 

global H F; 

%  INITIALIZATION STEPS: 

spP = []; 

spR = []; 

y = []; 

y2 = []; 

spstate = []; 

spQ = 1000*Q; 

sensorposition = [0;0]; % Assumes that the origin of the nav solution is ownship cg 

spmeas = []; 

sperror = []; 

sensor = 12; 

[sigr,sigb,Sv] = senserror(sensor); 

%sigr = 20.0;  %  Feet 

%sigb = 0.001; %  Radians from ownship 

%Sv = diag([sigr^2;sigb^2]); 

%  Measurement 1:  Add noise to initial position: 

        %  Take a noisy measurement 



 

157  
 

 

        [zcart1,spR1,disterror] = pole2cart(H*spxi,sensorposition,sigr,sigb,Sv); 

        spmeas = [spmeas,zcart1]; 

        sperror = [sperror,disterror]; 

   

%  Measurement 2: 

        %  Take a noisy measurement 

        [zcart2,spR2,disterror] = pole2cart(H*spx2,sensorposition,sigr,sigb,Sv); 

        spmeas = [spmeas,zcart2]; 

        sperror = [sperror,disterror]; 

%  vector yflipped contains the z's stacked z(2)/z(1) 

      yflipped = [zcart2(1);zcart2(2);zcart1(1);zcart1(2)]; 

      plantnoise = spR1 + H*inv(F)*spQ*(inv(F))'*H'; 

      cov = [spR2 zeros(2,2); 

         zeros(2,2) plantnoise]; 

      spP = D*cov*D'; 

      spstate = D*yflipped; 

 

 

NAME setztrue 

INPUT m,n,xin,xim 

OUTPUT  ztrue 

PURPOSE This function simply extracts the true x,y data from the maneuvering/non-maneuvering 
vectors. 

function ztrue = setztrue(m,n,xin,xim) 

global H; 

ztrue = []; 

%  NON-MANEUVERING  

if n > 0 

    for k = 1:n 

        ztrue = [ztrue;H*xin(:,k)]; 

    end 

end 

%  MANEUVERING 

if m > 0 

   for k = 1:m 

       ztrue = [ztrue;H*xim(:,k)]; 
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   end   

end 

 

 

NAME senserror 

INPUT  sensor 

OUTPUT  sigr,sigb,Sv 

PURPOSE This function matches the type of sensor to the corresponding errors.  For each of the 
sensors on the sensor platform, the range and bearing errors are returned along with the 
sensor variance matrix.   

function [sigr,sigb,Sv] = senserror(sensor) 

% NONE OF THE FORMAT TYPES ARE CORRECTED!!  ALL SENSORS ARE IN X-Y 
COORDS 

%  Input variables: 

%   sensor  # representing the sensor type 

%   1   Airborne search radar 

%   2   Shipboard search radar 

%   ... 

%   See the switch-case statement for the rest of the descriptions.   

 

%  Output variables: 

%   sigr    sigma range 

%   sigb    sigma bearing 

%   Sv      sensor variance matrix 

switch sensor 

        case 1,  

            %  AIRBORNE SURVEILLANCE RADAR 2-D 

            sigr = 100; 

            sigb = .005; 

            Sv = diag([sigr^2;sigb^2]); 

        case 2, 

            %  SURFACE SURVEILLANCE RADAR 2-D 

            sigr = 20; 

            sigb = .0001; 

            Sv = diag([sigr^2;sigb^2]); 

        case 3, 
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            %  AIRBORNE FIGHTER RADAR 

            sigr = 20; 

            sigb = .001; 

            Sv = diag([sigr^2;sigb^2]); 

        case 4, 

            %  SURFACE FIRE CONTROL RADAR 

            sigr = 10; 

            sigb = .00001; 

            Sv = diag([sigr^2;sigb^2]); 

        case 5, 

            %  NCTR 

            sigr = 20; 

            sigb = .0001; 

            Sv = diag([sigr^2;sigb^2]); 

        case 6, 

            %  EIFF 

            sigr = 20; 

            sigb = .0001; 

            Sv = diag([sigr^2;sigb^2]); 

        case 7, 

            %  IFF INTERROGATE   

            sigr = 50; 

            sigb = .001; 

            Sv = diag([sigr^2;sigb^2]); 

        case 8, 

            %  IFF REPLY ONLY (NOT USED YET) 

            sigr = 20; 

            sigb = .0001; 

            Sv = diag([sigr^2;sigb^2]); 

        case 9, 

            %  AIRBORNE ESM 

            sigr = 500; 

            sigb = .01; 

            Sv = diag([sigr^2;sigb^2]); 

        case 10, 



 

160  
 

 

            %  SURFACE ESM 

            sigr = 300; 

            sigb = .01; 

            Sv = diag([sigr^2;sigb^2]); 

        case 11, 

            %  IR DETECTOR 

            sigr = 6000; 

            sigb = .0001; 

            Sv = diag([sigr^2;sigb^2]); 

        case 12, 

            %  OWNSHIP NAVIGATION!! 

            sigr = 10; 

            sigb = 0.0001; 

            Sv = diag([sigr^2;sigb^2]); 

        case 13, 

            %  DATA LINK REPORT TRACKING ERRORS 

            sigr = 200; 

            sigb = .01; 

            Sv = diag([sigr^2;sigb^2]); 

        otherwise,  

            disp('Unknown sensor') 

        end 

 

 

 

NAME timestep 

INPUT  F,x 

OUTPUT  xnew 

PURPOSE The timestep function receives the time increment (F-matrix) and returns the new state 
vector for a moving target or platform, can be F or Fturn. 

function [xnew] = timestep(F,x) 

    xnew = F*x; 
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NAME spitmeas 

INPUT  sensor,spx2,spman,ownfturn,simt,in 

OUTPUT  spxtrue,spmeas,sper,spR,in 

PURPOSE This function will iterate the sensor platform and calculate the noisy measurement 

function [spxtrue,spmeas,sper,spR,in] = spitmeas(sensor,spx2,spman,ownfturn,simt,in); 

global H F sLEG sTURN; 

origin = [0;0];   % Assumes that the origin of the nav solution is ownship cg 

spmeas = []; 

sper = []; 

spR = []; 

sLEG = 0; 

sTURN = 0; 

%  spman has the maneuver times, only need to do one test: 

[rr,ll] = size(spman);  % so rr = the number of maneuver times 

%  Iterate the truth position: 

           %  Check for zeros here? 

           if in < rr  %  Executes every time 

               sLEG = spman(in); 

               sTURN = spman(in+1); 

           end    

           if in == rr 

               if mod(rr,2)==0 

                   sLEG = spman(in); 

                   sTURN = spman(in+1); 

               elseif mod(rr,2) == 1 

                   sLEG = spman(in); 

                   sTURN = sLEG+1; 

               end 

           end 

                if ( (simt <= sLEG) | (simt > sTURN) | (sTURN == 0) ) 

                    spxtrue = timestep(F,spx2);  %   Use non-maneuvering F if tgt is SLM 

                elseif (simt > sLEG) & (simt <= sTURN) | (sLEG == 0) %  What to do if turn is a zero?  
or Leg? 

                    spxtrue = timestep(ownfturn,spx2); 

                end 
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             %  Reset LEG & TURN as needed for each target: 

                if simt > sTURN & sTURN > 0 & in < rr 

                    in = in + 2; 

                end 

 

%  Measurement:  Add noise to position: 

 [sigr,sigb,Sv] = senserror(sensor); 

[spmeas,spR,sper] = pole2cart(H*spx2,origin,sigr,sigb,Sv); 

 

 

 

 

NAME meas 

INPUT  sensor,zre,Sp 

OUTPUT  R,zret,derror 

PURPOSE This function takes the noisy measurements and returns the matrix of noisy 
measurements (depending on the sensor type) 

function [R,zret,derror] = meas(sensor,zre,Sp) 

%  INPUTS: 

%   sensor: sensor type (just search radar for now) 

%   zre:      x matrix of true x,y measurements 

%   Sp:     sensor platform position 

%  OUTPUTS: 

%  xret     output matrix of noisy x,y coordinates 

%  disterror    actual distance errors for each measurement 

%  R        error covariance for the measurement of each target [R1;R2;R3;R4;R5....] 

%global MEAS_R zpol; 

zret = []; 

derror = []; 

sigr = 0.0; 

sigb = 0.0; 

Sv = []; 

[sigr,sigb,Sv] = senserror(sensor); 

[aa,bb] = size(zre); 

R = zeros(2*bb,2); 

for h = 1:bb 
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    %  Take a noisy measurement! 

    [zcart,R1,disterror] = pole2cart(zre(:,h),Sp,sigr,sigb,Sv); 

    zret = [zret;zcart]; 

    derror = [derror;disterror]; 

    R(2*h-1:2*h,:) = R1; 

end 

 

 

 

 

NAME tracker 

INPUT  Q1,P1,R1,xhat1,z1,count,trkr 

OUTPUT  xhat33,count 

PURPOSE Right now, this function only calls the appropriate tracker with all the applicable track 
data.  

function [xhat33,count] = tracker(Q1,P1,R1,xhat1,z1,count,trkr) 

    switch trkr 

        case 1,  

            [xhat33,count] = pdaf(Q1,P1,R1,xhat1,z1,count); 

 

        case 2, 

            [xhat33,count] = immtrk(Q1,P1,R1,xhat1,z1,count); 

        case 3, 

            [xhat33,count] = kalman(Q1,P1,R1,xhat1,z1,count); 

        case 4, 

            [xhat33,count] = constGKF(Q1,P1,R1,xhat1,z1,count); 

        case 5, 

            [xhat33,count] = kalman1(Q1,P1,R1,xhat1,z1,count); 

        otherwise,  

            disp('Undefined Tracker') 

        end 
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NAME pdaf 

INPUT  Q,P,R,xhat,zret,count 

OUTPUT  xhat33,count 

PURPOSE Tracker for fusim, will perform the following functions: 

PREDICT, based on previous stuff (stored as globals) 

UPDATE, based on current measurement 

 

%  Thesis Tracker:  Probabilistic Data Association Filter 

function [xhat33,count] = pdaf(Q,P,R,xhat,zret,count) 

global H F M I Qp Pd Pg Pp lambda sig2r sig2b gatev; 

global Sp; 

if count > 1 

    xhatone = zeros(size(xhat)); 

    m = 2; 

    for k = 1:M 

 

        a = 2*k-1; 

        b = 2*k; 

        c = 4*k-3; 

        d = 4*k; 

        xhatest = []; 

        Pproj = []; 

        %  Now for the weighted predictions: 

        xhatone(c:d,1) = F*xhat(c:d,1); 

        Pproj = F*Pp(c:d,:)*F' + Qp(c:d,:);  %okay so far 

    

        %  Calculate the b using non-parametric assumptions (diffuse prior model) 

        %  **************************       ************************ 

  e = []; 

  nu = []; 

  nuk = zeros(2,1); 

  beta = []; 

  mess = zeros(2,2); 

 

        %  Semi-major and semi-minor axis in feet: 
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        %minor = 600; 

        %major = 1500; 

     %Vk = 2*pi*minor*major; 

     %lambda = m/Vk; 

        PreS = H*Pproj*H'; 

        %  Calculate the innovation stuff for the actual measurement, based on meas S: 

        Sk = PreS + R(a:b,:); 

        Sinv = inv(Sk);  

        K = Pproj*H'*Sinv;  %  W!! 

        W = K; 

        bb = lambda*((det(2*pi*Sk))^.5)*(1-Pd*Pg)/Pd; 

       

        sum = bb; 

        knu = zret(a:b,1) - H*xhatone(c:d,1); 

        %knu = zcart - zproj; 

        e(1) = exp(-0.5*knu'*Sinv*knu); 

        nu(:,1) = knu; 

        sum = sum+e(1); 

       

        if m > 1,       

            for j = 2:m 

                [zclutter,Rclut,er] = pole2cart(zret(a:b,1),Sp,sig2r,sig2b,gatev); 

                zset = zclutter; 

                knu = zset - H*xhatone(c:d,1); 

             e(j) = exp(-0.5*knu'*Sinv*knu);  

             nu(:,j) = knu; 

             sum = sum+e(j); 

         end 

     end 

 

     for j = 1:m 

            v = nu(:,j); 

            beta(j) = e(j)/sum; 

            nuk = nuk + beta(j)*v; 

        end 
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        for j = 1:m 

            v = nu(:,j); 

            mess = mess + (beta(j)*v*v'); 

        end 

        mess = mess-nuk*nuk'; 

 

        betazero = bb/sum; 

     Ptilde = W*mess*W'; 

        %  ********************************************************** 

         

        Pc = Pproj-W*Sk*W'; 

        Pp(c:d,:) = betazero*Pproj + (1-betazero)*Pc + Ptilde; 

        xhatest = xhatone(c:d,1) + W*nuk; 

        xhat33(c:d,1) = xhatest; 

      end  

      return  

   elseif count == 1 

     

    Pd = 1.0; 

    Pg = .99; 

    m = 2; 

   %  Used only for generating "noisier" points: 

    sig2r = 900; 

    sig2b = 2.0*pi/180; 

    gatev = [sig2r^2,0; 

      0,sig2b^2]; 

 

    qsquared = 1000; 

    I = eye(4); 

    Pp = zeros(size(P)); 

    Pp(:,:) = P; 

    M = max(size(xhat)); 

    M = M/4; 

    Qp = zeros(size(P)); 
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    xhatone = zeros(size(xhat)); 

     

    for k = 1:M 

 

        a = 2*k-1; 

        b = 2*k; 

        c = 4*k-3; 

        d = 4*k; 

        Qp(c:d,:) = qsquared*Q; 

        xhatest = []; 

        Pproj = []; 

        %  Now for the weighted predictions: 

        xhatone(c:d,1) = F*xhat(c:d,1); 

        Pproj = F*Pp(c:d,:)*F' + Qp(c:d,:);  %okay so far 

    

        %  Calculate the b using non-parametric assumptions (diffuse prior model) 

        %  **************************       ************************ 

  e = []; 

  nu = []; 

  nuk = zeros(2,1); 

  beta = []; 

  mess = zeros(2,2); 

 

        %  Semi-major and semi-minor axis in feet: 

        minor = 600; 

        major = 1500; 

     Vk = 2*pi*minor*major; 

     lambda = m/Vk; 

        PreS = H*Pproj*H'; 

        %  Calculate the innovation stuff for the actual measurement, based on meas S: 

        Sk = PreS + R(a:b,:); 

        Sinv = inv(Sk);  

        K = Pproj*H'*Sinv;  %  W!! 

        W = K; 

        bb = lambda*((det(2*pi*Sk))^.5)*(1-Pd*Pg)/Pd; 
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        sum = bb; 

        knu = zret(a:b,1) - H*xhatone(c:d,1); 

        e(1) = exp(-0.5*knu'*Sinv*knu); 

        nu(:,1) = knu; 

        sum = sum+e(1); 

       

        if m > 1,       

            for j = 2:m 

                [zclutter,Rclut,er] = pole2cart(zret(a:b,1),Sp,sig2r,sig2b,gatev); 

                zset = zclutter; 

                knu = zset - H*xhatone(c:d,1); 

             e(j) = exp(-0.5*knu'*Sinv*knu);  

             nu(:,j) = knu; 

             sum = sum+e(j); 

         end 

     end 

 

     for j = 1:m 

            v = nu(:,j); 

            beta(j) = e(j)/sum; 

            nuk = nuk + beta(j)*v; 

        end 

        for j = 1:m 

            v = nu(:,j); 

            mess = mess + (beta(j)*v*v'); 

        end 

        mess = mess-nuk*nuk'; 

 

        betazero = bb/sum; 

     Ptilde = W*mess*W'; 

        %  ********************************************************** 

 

        Pc = Pproj-W*Sk*W'; 

        Pp(c:d,:) = betazero*Pproj + (1-betazero)*Pc + Ptilde; 
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        xhatest = xhatone(c:d,1) + W*nuk; 

        xhat33(c:d,1) = xhatest; 

      

     end  

     return  

end 

 

NAME immtrk 

INPUT  Q,P,R,xhat,zret,count 

OUTPUT  xhat33,count 

PURPOSE Tracker for fusim, will perform the following functions: 

PREDICT, based on previous stuff (stored as globals) 

UPDATE, based on current measurement 

%  Thesis Tracker:  Interacting Multiple Models (2) Filter 

function [xhat33,count] = immtrk(Q,P,R,xhat,zret,count) 

global H F M I Qi Qturn Pi Pturn xhatone xhattwo alpha beta row musave; 

 

if count > 1 

         

        for k = 1:M 

                            % PREDICTION STEP: 

            a = 2*k-1; 

            b = 2*k; 

            c = 4*k-3; 

            d = 4*k; 

            mu = musave(:,k); 

            %  Pre-process the cbars and mu's: 

            cbarone = row(1,1)*mu(1)+row(2,1)*mu(2); 

            cbartwo = row(1,2)*mu(1)+row(2,2)*mu(2); 

            %  Set up the calculations for xhat-zero-one 

            xhatzone = xhatone(c:d,1)*(row(1,1)*mu(1)/cbarone) + 
xhattwo(c:d,1)*(row(2,1)*mu(2)/cbarone); 

            xhatztwo = xhatone(c:d,1)*(row(1,2)*mu(1)/cbartwo) + 
xhattwo(c:d,1)*(row(2,2)*mu(2)/cbartwo); 

 

            muoneone = row(1,1)*mu(1)/cbarone; 
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            mutwoone = row(2,1)*mu(2)/cbarone; 

            muonetwo = row(1,2)*mu(1)/cbartwo; 

            mutwotwo = row(2,2)*mu(2)/cbartwo; 

       

            xtilde11 = xhatone(c:d,1)-xhatzone; 

            xtilde21 = xhattwo(c:d,1)-xhatzone; 

            xtilde12 = xhatone(c:d,1)-xhatztwo; 

            xtilde22 = xhattwo(c:d,1)-xhatztwo; 

         

            Pzeroone = muoneone*(Pi(c:d,:)+xtilde11*xtilde11') + 
mutwoone*(Pturn(c:d,:)+xtilde21*xtilde21'); 

            Pzerotwo = muonetwo*(Pi(c:d,:)+xtilde12*xtilde12') + 
mutwotwo*(Pturn(c:d,:)+xtilde22*xtilde22'); 

       

            %  Now for the weighted predictions: 

            xhatone(c:d,1) = F*xhatzone; 

            xhattwo(c:d,1) = F*xhatztwo; 

            Pone = F*Pzeroone*F' + Qi(c:d,:); 

            Ptwo = F*Pzerotwo*F' + Qturn(c:d,:); 

       

            %   Kalman Straight line: 

            K = Pone*H'*inv(H*Pone*H'+R(a:b,:));   

            %  Kalman Turn: 

            Kturn = Ptwo*H'*inv(H*Ptwo*H'+R(a:b,:)); 

            Pi(c:d,:) = (I-K*H)*Pone*(I-K*H)'+K*R(a:b,:)*K'; 

            Pturn(c:d,:) = (I-Kturn*H)*Ptwo*(I-Kturn*H)'+Kturn*R(a:b,:)*Kturn'; 

            S1 = H*Pone*H'+ R(a:b,:); 

            S2 = H*Ptwo*H'+ R(a:b,:); 

       

            %  MEASUREMENT UPDATE 

            %  Calculate the state estimate for straight line and turning: 

            %  Straight line 

            zt1 = zret(a:b,1) - H*xhatone(c:d,1); 

            xhatest = xhatone(c:d,1)+K*(zt1); 

            %  Turning 

            zt2 = zret(a:b,1) - H*xhattwo(c:d,1); 
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            xhatturn = xhattwo(c:d,1)+Kturn*(zt2); 

       

            %  Scores: 

            %m = 2.0; 

            Lambda1 = exp(-((zt1'*inv(S1)*zt1)/2.0))/( 2*pi*norm(S1)^.5 ); 

            Lambda2 = exp(-((zt2'*inv(S2)*zt2)/2.0))/( 2*pi*norm(S2)^.5 ); 

            see = Lambda1*cbarone + Lambda2*cbartwo; 

            %Store for next iteration 

            xhatone(c:d,1) = xhatest; 

            xhattwo(c:d,1) = xhatturn; 

            %  Combine the data for output 

            xhat33(c:d,1) = mu(1)*xhatest + mu(2)*xhatturn; 

 

            mustr = Lambda1*cbarone/see; 

            muturn = Lambda2*cbartwo/see; 

            musave(:,k) = [mustr;muturn];       

        end  

        %musave 

elseif count == 1 

     

    %  Set the probability of a turn if in SLM (alpha) and the prob of stop turn (beta) 

    %  if in a turn: 

    alpha = 0.1; 

    beta = 0.33333; 

    qsquared = 1; 

    turnq2 = 100000; 

    row = [(1-alpha),alpha;beta,(1-beta)]; 

    xhatone = xhat; 

    xhattwo = xhatone; 

    I = eye(4); 

    Pi = zeros(size(P)); 

    Pi(:,:) = P; 

    Pturn = zeros(size(P)); 

    Pturn(:,:) = P; 

    M = max(size(xhat)); 
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    M = M/4; 

    %  Initial State Likelihood:  (straight line track) 

    musave = zeros(size(2,M)); 

    mu = [1;0]; 

    Qi = zeros(size(P)); 

    Qturn = zeros(size(P)); 

    for k = 1:M 

        musave(1:2,k) = mu; 

    end 

     

    for k = 1:M 

                            % INITIAL PREDICTION STEP ONLY!!: 

 

        a = 2*k-1; 

        b = 2*k; 

        c = 4*k-3; 

        d = 4*k; 

        Qi(c:d,:) = qsquared*Q; 

        Qturn(c:d,:) = turnq2*Q; 

        %  Pre-process the cbars and mu's: 

         

        cbarone = row(1,1)*mu(1)+row(2,1)*mu(2); 

        cbartwo = row(1,2)*mu(1)+row(2,2)*mu(2); 

        %  Set up the calculations for xhat-zero-one 

        xhatzone = xhatone(c:d,1)*(row(1,1)*mu(1)/cbarone) + 
xhattwo(c:d,1)*(row(2,1)*mu(2)/cbarone); 

        xhatztwo = xhatone(c:d,1)*(row(1,2)*mu(1)/cbartwo) + 
xhattwo(c:d,1)*(row(2,2)*mu(2)/cbartwo); 

 

        muoneone = row(1,1)*mu(1)/cbarone; 

        mutwoone = row(2,1)*mu(2)/cbarone; 

        muonetwo = row(1,2)*mu(1)/cbartwo; 

        mutwotwo = row(2,2)*mu(2)/cbartwo; 

       

        xtilde11 = xhatone(c:d,1)-xhatzone; 

        xtilde21 = xhattwo(c:d,1)-xhatzone; 
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        xtilde12 = xhatone(c:d,1)-xhatztwo; 

        xtilde22 = xhattwo(c:d,1)-xhatztwo; 

         

        Pzeroone = muoneone*(Pi(c:d,:)+xtilde11*xtilde11') + 
mutwoone*(Pturn(c:d,:)+xtilde21*xtilde21'); 

        Pzerotwo = muonetwo*(Pi(c:d,:)+xtilde12*xtilde12') + 
mutwotwo*(Pturn(c:d,:)+xtilde22*xtilde22'); 

       

        %  Now for the weighted predictions: 

        xhatone(c:d,1) = F*xhatzone; 

        xhattwo(c:d,1) = F*xhatztwo; 

        Pone = F*Pzeroone*F' + Qi(c:d,:); 

        Ptwo = F*Pzerotwo*F' + Qturn(c:d,:); 

       

        %   Kalman Straight line: 

        K = Pone*H'*inv(H*Pone*H'+R(a:b,:));   

        %  Kalman Turn: 

        Kturn = Ptwo*H'*inv(H*Ptwo*H'+R(a:b,:)); 

        Pi(c:d,:) = (I-K*H)*Pone*(I-K*H)'+K*R(a:b,:)*K'; 

        Pturn(c:d,:) = (I-Kturn*H)*Ptwo*(I-Kturn*H)'+Kturn*R(a:b,:)*Kturn'; 

        S1 = H*Pone*H'+ R(a:b,:); 

        S2 = H*Ptwo*H'+ R(a:b,:); 

       

        %  MEASUREMENT UPDATE 

        %  Calculate the state estimate for straight line and turning: 

        %  Straight line 

        zt1 = zret(a:b,1) - H*xhatone(c:d,1); 

        xhatest = xhatone(c:d,1)+K*(zt1); 

        %  Turning 

        zt2 = zret(a:b,1) - H*xhattwo(c:d,1); 

        xhatturn = xhattwo(c:d,1)+Kturn*(zt2); 

       

        xhat33(c:d,1) = mu(1)*xhatest + mu(2)*xhatturn; 

       

        %  Scores: 

        %m = 2.0; 
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        Lambda1 = exp(-((zt1'*inv(S1)*zt1)/2.0))/( 2*pi*norm(S1)^.5 ); %(2*pi)^(m/2)*norm(S1)^.5 

        Lambda2 = exp(-((zt2'*inv(S2)*zt2)/2.0))/( 2*pi*norm(S2)^.5 ); %(2*pi)^(m/2)*norm(S2)^.5 

        see = Lambda1*cbarone + Lambda2*cbartwo; 

        mustr = Lambda1*cbarone/see; 

        muturn = Lambda2*cbartwo/see; 

        musave(:,k) = [mustr;muturn];       

       

        xhatone(c:d,1) = xhatest; 

        xhattwo(c:d,1) = xhatturn; 

       

     end  

     return  

end 

 

 

NAME kalman 

INPUT  Q,P,R,xhat,zret,count 

OUTPUT  xhat33,count 

PURPOSE Tracker for fusim, will perform the following functions: 

PREDICT, based on previous stuff (stored as globals) 

UPDATE, based on current measurement 

%  Thesis Tracker:  Kalman Filter 

function [xhat33,count] = kalman(Q,P,R,xhat,zret,count) 

global H F Mk I Pk Qk; 

 

if count > 1 

        xhat32 = zeros(size(xhat)); 

        for k = 1:Mk 

                            % PREDICTION STEP: 

            Ptemp = []; 

            a = 2*k-1; 

            b = 2*k; 

            c = 4*k-3; 

            d = 4*k; 

            Ptemp = (F*Pk(c:d,:)*F' + Qk(c:d,:)); 
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            Pk(c:d,:) = Ptemp; 

            xhat32(c:d,1) = F*xhat(c:d,1); 

 

                            %  UPDATE STEP: 

            K = Pk(c:d,:)*H'*inv(H*Pk(c:d,:)*H' + R(a:b,:));  %  S1v = R 

            Ppre(c:d,:) = (I-K*H)*Pk(c:d,:)*(I-K*H)'+K*R(a:b,:)*K';         

            xhat33(c:d,1) = xhat32(c:d,1)+K*(zret(a:b,1) - H*xhat32(c:d,1)); 

        end  

        Pk = Ppre; 

         

elseif count == 1 

    qsquared = 10000; 

    K = []; 

    I = eye(4); 

    xhat32 = zeros(size(xhat)); 

    Pk = zeros(size(P)); 

    Mk = max(size(xhat)); 

    Mk = Mk/4; 

    Qk = zeros(size(P)); 

    for k = 1:Mk 

                            % INITIAL PREDICTION STEP ONLY!!: 

        a = 2*k-1; 

        b = 2*k; 

        c = 4*k-3; 

        d = 4*k; 

        Qk(c:d,:) = qsquared*Q; 

        Pk(c:d,:) = F*P(c:d,:)*F' + Qk(c:d,:); 

        xhat32(c:d,1) = F*xhat(c:d,1); 

 

                            %  UPDATE STEP: 

        

        K = Pk(c:d,:)*H'*inv(H*Pk(c:d,:)*H' + R(a:b,:));  %  S1v = R 

        Ppre(c:d,:) = (I-K*H)*Pk(c:d,:)*(I-K*H)'+K*R(a:b,:)*K';         

        xhat33(c:d,1) = xhat32(c:d,1)+K*(zret(a:b,1) - H*xhat32(c:d,1)); 

     end  
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        Pk = Ppre; 

     return  

end 

 

 

 

 

NAME constGKF 

INPUT  Q,P,R,xhat,zret,count 

OUTPUT  xhat33,count 

PURPOSE Tracker for fusim, will perform the following functions: 

PREDICT, based on previous stuff (stored as globals) 

UPDATE, based on current measurement 

 

%  CONSTANT GAIN KALMAN FILTER 

function [xhat33,count] = constGKF(Q,P,R,xhat,zret,count) 

global Kbar M F H; 

if count > 1 

        xhat32 = zeros(size(xhat)); 

        for k = 1:M 

                            % PREDICTION STEP: 

            a = 2*k-1; 

            b = 2*k; 

            c = 4*k-3; 

            d = 4*k; 

            xhat32(c:d,1) = F*xhat(c:d,1); 

 

                            %  UPDATE STEP: 

            xhat33(c:d,1) = xhat32(c:d,1)+Kbar(c:d,:)*( zret(a:b,1) - H*xhat32(c:d,1) ); 

        end    

elseif count == 1 

    r = zeros(2,2); 

    Kbar = []; 

    qsquared = 10000.0; 

    Q = qsquared*Q; 
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    xhat32 = zeros(size(xhat)); 

    M = max(size(xhat)); 

    M = M/4; 

    for k = 1:M 

                            % PREDICTION STEP: 

        a = 2*k-1; 

        b = 2*k; 

        c = 4*k-3; 

        d = 4*k; 

        r(1:2,1:2) = R(a:b,1:2); 

        G = eye(4); 

        [KBAR,Pbar] = dlqe(F,G,H,Q,r); 

        Kbar = [Kbar;KBAR]; 

        xhat32(c:d,1) = F*xhat(c:d,1); 

 

                            %  UPDATE STEP: 

        xhat33(c:d,1) = xhat32(c:d,1)+KBAR*(zret(a:b,1) - H*xhat32(c:d,1) ); 

     end  

end  

 

 

 

NAME linkreport 

INPUT  xhat,simt 

OUTPUT  linkdat,lstate 

PURPOSE This function creates a simulated data link report for the targets and allows for addition 
of attribute data, such as IFF data FORMAT: 
[x,y,velocity,heading,time,iff1,iff2,iff3,iff4,iffc,emitter1,emitter2,ID,reportingunit]; 

function [linkdat,lstate] = linkreport(xhat,simt) 

global M; 

linkdat = []; 

lstate = []; 

%tempxhat = [0;0]; 

for k = 1:M 

    a = 4*k-3;  %1 

    b = 4*k-2;  %2 
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    c = 4*k-1;  %3 

    d = 4*k;    %4 

 %   tempxhat(1) = xhat(a); 

 %   tempxhat(2) = xhat(c); 

    %  Add in noise 

    x = xhat(a) + randn*50; 

    y = xhat(c) + randn*50; 

    vx = xhat(b) + randn*10; 

    vy = xhat(d) + randn*10; 

    %  Add in a set value of bias error, simulates DLRP/gridlock errors 

    x = x + 100;  % 100 feet in bias error x-direction 

    y = y + 100;  % 100 feet in bias error y-direction 

    hdg = 0; %round(atan(vx,vy)*180/pi); 

    v = sqrt(vx^2 + vy^2); 

    linkvector = [x,vx,y,vy,v,hdg,simt,0,0,0,0,0,0]; 

    lstate = [lstate;linkvector]; 

    linkdat = [linkdat;x;y]; 

end 

 

     

 

 

NAME simplot 

INPUT  mn,ns,xhat,Spst 

OUTPUT  Plot with coordinates in feet 

PURPOSE This function is used to plot the main display (for each of the targets)  Ownship is the 
first target.   

function simplot(mn,ns,xhat,Spst) 

%  mn -     Total number of targets 

%  xhat -   Current tracking state.   

global H; 

xyplot = zeros(2,1); 

figure(1) 

axis([-250000 850000 -250000 1000000]); 

xlabel('LONGITUDE - in feet for now'); ylabel('LATITUDE - in feet for now'); 

title(['Single Sensor Tracking Solutions']); 
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hold on; 

pause(.01) 

handle2 = []; 

r=0; g=1; b=0; 

handle1 = plot(Spst(1),Spst(3),'m*','erasemode','xor','markersize',6); 

%set(handle1,'color',[r g b]) 

 

for k = 1:ns 

    if k == 1 

        r=0; g=0; b=1;        

    elseif k == 2 

        r=1; g=0; b=0; 

    elseif k == 3 

        r=.75; g=.5; b=0; 

    elseif k == 4 

        r=0; g=.5; b=.5; 

    end 

       

      for hh = 1:mn 

          xyplot = H*xhat(4*hh-3:4*hh,:,k); 

          handle2(hh) = plot(xyplot(1),xyplot(2),'+','erasemode','xor','markersize',6); 

          set(handle2(hh),'color',[r g b]) 

          %plot(xyplot(1),xyplot(2),'*'); 

          %set(handle2,'xposition',xyplot(1),'yposition',xyplot(2)); 

      end 

       

  end 

 

 

 

 

 

 

 

 



 

180  
 

 

NAME lsecalc 

INPUT mn,state,posout,nsamples 

OUTPUT  LSE 

PURPOSE This function calculates the Least Square Error comparing the state vector to the truth 
position.   

function LSE = lsecalc(mn,state,posout,nsamples) 

LSE = []; 

for hh = 1:mn 

    i1 = 4*hh-3; 

    i2 = 4*hh-1; 

    temp1 = [state(i1,:); 

      state(i2,:)]; 

     

    tempposout = [posout(2*hh-1,2:(nsamples));posout(2*hh,2:(nsamples))]; 

    Kalmanerror = tempposout-temp1; 

    temp2 = []; 

    temp3 = 0.0; 

    LSerror = []; 

    for g = 1:nsamples-1, 

      temp2 = [Kalmanerror(1,g);Kalmanerror(2,g)]; 

      temp3 = sqrt( temp2(1)^2 + temp2(2)^2 ); 

      LSerror = [LSerror,temp3]; 

    end 

    LSE = [LSE;LSerror]; 

end 
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NAME errorplots 

INPUT  delta,merror,LSmean,trkr 

OUTPUT  handl, error plots for each target and/or sensor 

PURPOSE This function plots the mean measurement errors and least squares tracking errors for 
each sensor and target 

function handl = errorplots(delta,merror,LSmean,trkr) 

%  merror is mean measurement error 

%  statemean is the matrix of mean states 

%  posout is the truth data 

%  delta is the time step 

%  nothing returned except the plot handle. 

[a b c] = size(LSmean); 

nsamples = max(size(merror)); 

time = [0:max(size(LSmean)-1)]*delta; 

merror = merror(:,2:end,:); 

    for hh = 1:a  %  Plot for each target: 

        figure 

        title(['Mean Error (-) vs. Time, 1 Sensor Type/4 Trackers/100 run(s)']); 

        axis([0 900 -1 1]); 

        xlabel('Time, (seconds)'); ylabel('Error, (feet)'); 

        hold on; 

        %for k = 1:c 

            plot(time,LSmean(hh,:,1),'b-');  %  PDA 

            plot(time,LSmean(hh,:,2),'g-');  %  IMM 

            plot(time,LSmean(hh,:,3),'r-');  %  KALMAN 

            plot(time,LSmean(hh,:,4),'m-');  %  CGK 

            plot(time,merror(hh,:,1),'c-');  %  Mean Error 

            %end 

    end 

 

 

%for k = 1:c  %  Loop for each sensor 

%    merror2 = merror(:,2:nsamples,k); 

%    trkrID = trkr(k); 

%    for hh = 1:a  %  Loop for each target 
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%        figure 

%        plot(time,merror2(hh,:),'-',time,LSmean(hh,:,k),'-'); 

%        if trkrID == 1 

%            title(['Mean Dist Error (-)/Mean PDAF Error (-) vs. Time (1 run(s))']); 

%        elseif trkrID == 2 

%            title(['Mean Dist Error (-)/Mean IMM Error (-) vs. Time (1 run(s))']); 

%        elseif trkrID == 3 

%            title(['Mean Dist Error (-)/Mean Kalman Error (-) vs. Time (1 run(s))']); 

%        elseif trkrID == 4 

%            title(['Mean Dist Error (-)/Mean Const Gain Kalman Error (-) vs. Time (1 run(s))']); 

%        end 

%    end 

%end 

handl = 0; 

 

 

 

 

NAME trackplot 

INPUT  posout,zoutmean,statemean,sppos,spstatemean,linkmean 

OUTPUT  hand, track plot 

PURPOSE This function plots the true position, the noisy measurements and the track states for each 
track and each sensor, and provides a single plot for comparison of all sensors and 
multiple plots of the primary tracker 

function hand = trackplot(posout,zoutmean,statemean,sppos,spstatemean,linkmean) 

 [mn lots ns] = size(statemean); 

mn = mn/4; 

%figure 

%hold on 

%po1 = zeros(2,max(size(posout)));  ******* 

%po2 = po1;  ********* 

%for i = 1:mn 

%    po1(:,:) = posout(2*i-1:2*i,:);   

%    plot(po1(1,:),po1(2,:),'-'); 

%end 

%title(['True Target Motion/Mean Measured Position (1 run(s))']); 
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%for j = 1:ns 

%    for i = 1:mn   

%        po2(:,:) = zoutmean(2*i-1:2*i,:,j); 

%        plot(po2(1,:),po2(2,:),'-'); 

%    end 

%end 

 

figure 

hold on 

Hline = []; 

linecolor = [0 0 1]; 

for j = 1:ns  %  For each sensor: 

    if j == 1 

        r=0; g=0; b=1;        

    elseif j == 2 

        r=1; g=0; b=0; 

    elseif j == 3 

        r=.75; g=.5; b=0; 

    elseif j == 4 

        r=0; g=.5; b=.5; 

    end 

    for i = 1:mn %  Loop for each target: 

        poo = statemean(4*i-3,:,j);  %  X values 

        po1 = statemean(4*i-1,:,j);  %  Y values 

        po2 = [poo;po1]; 

        Hline(i) = plot(po2(1,:),po2(2,:),'-'); 

         

    end 

    set(Hline,'color',linecolor); 

    linecolor = [r g b]; 

end 

title(['Mean State (Tracking Solution) for All Sensors(100 runs)']); 

 

%figure 

axis([-250000 850000 -250000 1000000]); 
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xlabel('LONGITUDE (feet)'); ylabel('LATITUDE (feet)'); 

%hold on 

plot(sppos(1,:),sppos(2,:),'-',spstatemean(1,:),spstatemean(3,:),'-' ); 

%poc = zeros(2,max(size(statemean))); 

po1 = zeros(2,max(size(posout)-1)); 

for i = 1:mn  %  Plot actual for each target  

    po1(:,:) = posout(2*i-1:2*i,2:end);   

%    poc(:,:) = [statemean(4*i-3,:,1);statemean(4*i-1,:,1)]; 

    plot(po1(1,:),po1(2,:),'-');  %,poc(1,:),poc(2,:),'-' ); 

end 

%  Plot the data link result: 

for i = 1:mn 

    link(:,:) = linkmean(2*i-1:2*i,1:end); 

    plot(link(1,:),link(2,:),'m-'); 

end 

 

%title(['Mean Tracker State/Link Report vs. True Position(1 run)']); 

hand = 0; 
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