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ABSTRACT

A numerical investigation of the transonic two-

degree-of-freedom bending/torsion 
utter characteris-

tics of the NLR 7301 section is presented using a time

domain method. An unsteady, two-dimensional, com-

pressible, thin-layer Navier-Stokes 
ow-solver is cou-

pled with a two-degree-of-freedom structural model.

Furthermore, the Baldwin-Lomax, the Baldwin-Barth

and the Spalart-Allmaras turbulence models are imple-

mented, each in conjunction with the transition model

of Gostelow et al. The transition onset location can ei-

ther be predicted with Michel's criterion or speci�ed as

an input parameter. Computations of the steady tran-

sonic aerodynamic characteristics show good agree-

ment with the experimental results using the Baldwin-

Barth or the Spalart-Allmaras model in combination

with transition modeling. The aeroelastic computa-

tions predict limit-cycle 
utter in agreement with the

experiment. However, the computed 
utter ampli-

tudes are an order of magnitude larger than the mea-

sured ones.

NOMENCLATURE

a1 = free stream speed of sound

c = chord length

Cl = lift coe�cient per unit span

Cm = pitching moment coe�cient per unit span

Cp = pressure coe�cient

Dh = plunge-damping coe�cient

D� = pitch-damping coe�cient

e = total energy per unit volume

f = frequency in Hertz

h = bending displacement (positive downward)
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I� = moment of inertia about xp per unit span

k = reduced frequency, !c=U1
k� = reduced natural pitching frequency, !�c=U1
kh = reduced natural plunging frequency, !hc=U1
Kh = spring constant for plunging

K� = spring constant for pitching

L = lift per unit span

m = mass of the wing per unit span

M = pitching moment per unit span

M1 = free-stream Mach number

Re = Reynolds number

S� = static moment, x�m

t = time

U1 = free-stream speed

u;w = Cartesian velocity components

x = coordinate along chord

xp = leading edge to elastic axis distance

x� = elastic axis to center of mass distance

xt = transition onset location

_xjwall = velocity component of blade surface

_yjwall = velocity component of blade surface

y
+ = nondimensional normal wall distance

� = angle of attack

�0 = spring-neutral angle of attack

�h = non-dim. plunge-damping coef., Dh=(2
p
mKh)

�� = non-dim. pitch-damping coef., D�=(2
p
I�K�)

� = viscosity

� = kinematic viscosity

�t = turbulent viscosity

� = density

! = circular frequency, ! = 2�f

!h = undamped natural bending freq.,
p
Kh=m

!� = undamped natural torsional freq.,
p
K�=I�

� = nondimensional time, ta1=c

(_) = di�erentiation with respect to t

( )0 = di�erentiation with respect to �

jwall = quantity on the surface of the blade

( )1 = free-stream value

INTRODUCTION

It is well known that the 
utter speed of typical

aircraft wings exhibits a pronounced dip at transonic


ight speeds. There is therefore a great need to de-

velop reliable transonic 
utter prediction methods ca-



pable of predicting the strong nonlinear/viscous 
ow

phenomena which are encountered in transonic 
ight.

Transonic 
utter may also occur on propeller and he-

licopter blades and in high performance compressor

and turbine stages. Especially in turbomachines, the

blade chord Reynolds numbers may be quite low and,

therefore, improved modeling of the viscous 
ow ef-

fects becomes quite important.

Successful modeling of unsteady transonic 
ows

must not only include the inviscid nonlinear 
ow fea-

tures but also the viscous e�ects caused by the state

of the boundary-layer, the shock/boundary-layer inter-

action, 
ow-separation and the presence of separation

bubbles. For example, Van Dyken et al. (1996) have

shown that the boundary-layer transition has a signif-

icant e�ect on the onset of 
ow separation, even at

moderately high Reynolds numbers. Therefore, pre-

dictions of transition onset and length are essential to

capture 
ow features, such as separation bubbles and

shock/boundary-layer interactions.

Fortunately, with the seemingly unbounded tech-

nological advances in computer performance over the

last decade, it is now possible to explore these prob-

lems with su�cient detail, using aeroelastic solvers.

The complex 
ow physics can be captured with ad-

vanced Navier-Stoke analysis which include sophisti-

cated transition modeling and state of the art turbu-

lence models.

The aim of the present work is to numerically

investigate the fundamental phenomena which drive

transonic 
utter of a single airfoil using a thin-layer

Navier-Stokes aeroelastic solver. In the present study,

the turbulence models of Baldwin and Lomax (1978),

of Baldwin and Barth (1990), and of Spalart and All-

maras (1992) are used to model turbulent 
ow regions.

Each turbulence model is coupled with the transition

model of Gostelow et al. (1996). Numerical results are

compared with experimental measurements of Schewe

and Deyhle (1996) and Knipfer et al. (1998) to vali-

date the predictive capability of the code for unsteady

transonic 
ow. Schewe and Deyhle have measured the


utter characteristics of a 2D supercritical wing of the

NLR 7301 series in a wind-tunnel. These measure-

ments indicated a transonic dip at a Mach number of

0.77. Limit-cycle oscillations in pitch and plunge were

found in the experiment near this Mach number.

The 
ow solver and the aeroelastic models have

been tested and validated extensively in previous stud-

ies for a variety of 
ow conditions. For example, the


ow solver and the turbulence models have been tested

for subsonic 
ow by Sanz and Platzer (1998), Ekateri-

naris and Menter (1994), Ekaterinaris et al. (1998) and

for transonic 
ow by Ekaterinaris et al. (1994). The

aeroelastic model has been implemented and tested by

Jones and Platzer (1998) for inviscid 
ow calculations.

The ability of the numerical solution to capture

shock/boundary-layer interactions in steady-state tran-

sonic 
ow is �rst demonstrated and the e�ect of tran-

sition modeling for these 
ow conditions is shown. Nu-

merical solutions for an airfoil free to oscillate in one-

or two-degrees-of-freedom in transonic 
ow are obtained.

NUMERICAL METHODS

Aeroelastic behavior of a blade or a wing can be

predicted by solving the aerodynamic 
ow in combi-

nation with the structural dynamics. The 
ow solver

and the method used to compute the structural re-

sponse to the aerodynamic 
ow �eld are presented in

the following sections.

AERODYNAMICS

The unsteady, compressible, two-dimensional, thin-

layer Navier-Stokes equations in the strong conservation-

law form and curvilinear coordinate system (�; �) are

@tQ̂+ @�F̂+ @�Ĝ = Re
�1
@�Ŝ (1)

where Q̂ is the vector of conservative variables,

Q̂ =
1

J

8><
>:

�

�u

�w

e

9>=
>; ; (2)

F̂ and Ĝ are the inviscid 
ux vectors,

F̂ =
1

J

8><
>:

�U

�uU + �xp

�wU + �zp

(e+ p)U � �tp

9>=
>; ; (3)

Ĝ =
1

J

8><
>:

�W

�uW + �xp

�wW + �zp

(e+ p)W � �tp

9>=
>; (4)

and Ŝ is the thin-layer approximation of the viscous


uxes in the � direction (normal to the airfoil surface),

Ŝ =
1

J

8><
>:

0

�m1u� + (�=3)m2�x

�m1w� + (�=3)m2�z

�m1m3 + (�=3)m2m4

9>=
>; ; (5)

where

m1 = �
2
x + �

2
z ; (6)

m2 = �xu� + �zw�; (7)

m3 = (u2 + w
2)=2 + (
 � 1)�1Pr�1@�(a

2) (8)

and
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m4 = �xu+ �zw: (9)

The terms U and W are the contravariant velocity

components given by

U = u�x + w�z + �t (10)

and

W = u�x + w�z + �t (11)

and J is the metric Jacobian, where

J
�1 = x�z� � x�z� : (12)

Pressure is related to the other variables through the

equation of state for an ideal gas

p = (
 � 1)
h
e� �(u2 + w

2)=2
i
: (13)

Eqs. (1-13) are nondimensionalized using c as the

reference length, a1 as the reference speed, c=a1 as

the reference time, �1 as the reference density and

�1a
2
1 as the reference energy.

For Euler solutions, the viscous terms on the

RHS are set to zero, and 
ow-tangency boundary con-

ditions are used at the surface. For Navier-Stokes so-

lutions, the no-slip condition is applied. Density and

pressure are extrapolated to the wall for both Euler

and Navier-Stokes solutions.

For unsteady airfoil motions, the 
ow-tangency

and no-slip conditions are modi�ed to include the local

motion of the surface which also contributes to the

pressure on the surface. Therefore, the momentum

equation normal to the surface (� direction) is solved to

predict the pressure for a viscous 
ow more accurately

@�pjwall = � 1

r2�

�
� @t

�
_xjwall
_yjwall

�
� r� (14)

+ @�pjwallr� � r�
�
;

where _xjwall and _yjwall are the components of the blade

velocity. Furthermore, by assuming that the grid is

orthogonal at the surface r� � r� = 0. If the blade

is stationary, the normal pressure gradient vanishes in

agreement with boundary-layer theory.

The numerical algorithm, developed by Ekateri-

naris and Menter (1994), performs time integration

with the implicit, factorized, iterative scheme of Rai

and Chakravarthy (1988) given by Eq. (15). In Eq.

(15), h� = ��=�� etc., Â� = @F̂ =@Q̂ etc. are the


ux Jacobian matrices and r, � and � are the for-

ward, backward and central di�erence operators, re-

spectively. The quantities F̂i+1=2;k, Ĝi;k+1=2 and Ŝi;k+1=2
are numerical 
uxes. The superscript (�)n denotes the

time step, and the superscript (�)p refers to Newton

subiterations within each time step.

h
I+h�

�
r�Â

+

i;k
+��Â

�
i;k

�ip

�
h
I + h�

�
r�B̂

+

i;k
+��B̂

�
i;k
� Re

�1
��M̂i;k

�ip

�
�
Q̂
p+1

i;k
� Q̂

p

i;k

�

= �
��
Q̂
p

i;k
� Q̂

n
i;k

�
(15)

+ h�

�
F̂
p

i+1=2;k
� F̂

p

i�1=2;k

�

+ h�

�
Ĝ
p

i;k+1=2
� Ĝ

p

i;k�1=2

�

� Re
�1
h�

�
Ŝ
p

i;k+1=2
� Ŝ

p

i;k�1=2

��
:

The inviscid 
uxes, F̂ and Ĝ, are evaluated us-

ing Osher's third-order upwind-biased scheme (Osher

and Chakravarthy, 1985 and Chakravarthy and Osher,

1983). Linearization of the left-hand side of Eq. (15)

is performed by evaluating the 
ux Jacobian matri-

ces, A and B, with the Steger-Warming 
ux-vector

splitting (Steger and Warming, 1981). The viscous


uxes are computed with second-order central di�er-

ences. Furthermore, a standard minmod TVD scheme

(Osher and Chakravarthy, 1985) is used to eliminate

numerical oscillations at shocks developed at transonic

Mach numbers.

Time accuracy is improved by performing New-

ton subiterations to convergence at each step. These

subiterations minimize the linearization and factoriza-

tion errors and help drive the left-hand side of Eq. (15)

to zero within each physical time step. Numerical ex-

periments have shown that larger CFL numbers (i.e., a

larger time step) could be used if the number of New-

ton iterations was increased. The optimum seemed

to depend on the grid density and 
ow conditions,

but the best computational performance appears to

occur with 4 to 5 sub-iterations on coarse grids (Euler

simulations), and 2 to 3 sub-iterations on �ne grids

(Navier-Stokes simulations). The Navier-Stokes solver

has been tested extensively in a variety of unsteady

subsonic and transonic studies such as Ekaterinaris et

al. (1994).

The turbulence modeling is based either on the

standard algebraic model of Baldwin and Lomax (1978)

(BL) or the one equation models of Baldwin and Barth

(1990) (BB) or Spalart and Allmaras (1992)(SA). The

eddy-viscosity obtained from the models is used for the

computation of the fully turbulent region and for the

evaluation of an e�ective eddy viscosity in the transi-

tional 
ow region as is explained next.
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TRANSITION MODELING

The transition modeling for all turbulence mod-

els follows Sanz and Platzer (1998). In this publication

the model of Gostelow et al. (1996) was introduced

which permits the calculation of the transition length

as a function of pressure gradient and free-stream tur-

bulence level. This method continuously adjusts the

turbulent spot growth in response to changes of the

local pressure gradient.

The intermittency function in the transitional re-

gion is given by


(x) = 1 (16)

� exp

�
�n

Z xi

xt

�

tan�

�
dx

U

�Z xi

xt

tan�dx

�
;

where the correlations for the variation of the spot

propagation parameter � and the spot spreading half

angle � as functions of the pressure gradient parameter

�� are

� = 4 +
22:14

0:79 + 2:72 exp(47:63��)
(17)

and

� = 0:03 +
0:37

0:48 + 3:0 exp(52:9��)
: (18)

Here �� = (�2=�)=(dU=dx) with the boundary-layer

momentum thickness, �, and the outer-edge velocity,

U . The spot generation rate, n, is inferred from the

dimensionless breakdown-rate parameter, N , where

N = n��
3

�t
=� ; (19)

N = 0:86� 10�3 exp(2:134��t ln(qt) (20)

� 59:23��t � 0:564 ln(qt)); for ��t � 0

and

N = N (�� = 0)� exp(�10
p
��t); for ��t > 0 ; (21)

and where qt denotes the free-stream turbulence.

The spot-propagation-rate and the spot spread-

ing half-angle asymptotically approach a maximum

value for high negative values of ��, but n is allowed

to increase to in�nity for high negative values of ��t,

where ��t is the pressure gradient at the transition

onset location, xt. The value of the intermittency

parameter, 
(x), is zero for x � xt, and increases

downstream from the transition point, asymptotically

to a maximum value of unity, which corresponds to

fully-turbulent 
ow. An e�ective eddy-viscosity for

the transitional region is obtained by scaling the tur-

bulent eddy-viscosity computed by 
(x), i.e. �trans =


(x)�turb.

Sanz and Platzer (1998) have used the Gostelow

model, originally developed for attached 
ow, for the

prediction of laminar separation bubbles by using the

spot-generation rate as a second adjustable parameter

along with the location of transition onset. They inves-

tigated the in
uence of the spot-generation rate on the

separation bubble by either limiting the breakdown-

rate parameter to 1.0, which forces instantaneous tran-

sition, or by assuming the value for a zero pressure-

gradient. In the present study a breakdown-rate pa-

rameter of 1.0 was chosen and the transition onset was

either predicted by the Michel criterion (Cebeci and

Bradshaw, 1977) or by speci�cation as an input pa-

rameter.

STRUCTURAL DYNAMICS

Structural modeling is facilitated using a two-

degree-of-freedom spring/mass/damper system (Fig.

1) to simulate the bending and twisting of a wing.

The equations governing this motion are

m�h+ S���+Dh
_h+m!

2

hh = �L (22)

and

S�
�h+ I���+D� _�+ I�!

2
���0

� =M ; (23)

where the dots denote di�erentiation with respect to

time.

444444444444444444444444444444444444444
444444444444444444444444444444444444444

α(t)

h(t)

D

D

K

K

h h

α
α

x x

c

p
α

α0

At−rest position

Fig. 1. Schematic of the spring/mass/damper system.

Equations (22, 23) are nondimensionalized us-

ing reference length c, reference velocity a1, reference

mass �1�(c=2)
2, and reference inertia �1�(c=2)

2
c
2.
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Rewriting Eqs. (22) and (23) in matrix notation one

obtains

[M]fXg00 + [D]fXg0 + [K]fXg = fFg (24)

where

[M] =

�
m S�

S� I�

�
; [D] =

�
2�hmkh 0

0 2��I�k�

�
;

[K] =

�
mk

2
h

0

0 I�k
2
�

�
; fXg =

�
h

�� �0

�

and

fFg = 2

�
M2

1

��Cl

Cm

�
;

where the primes denote di�erentiation with respect

to nondimensional time, � = ta1=c, and the other

parameters (i.e., m, I�,...) are now non-dimensional.

Note that kh and k� appearing in the matrices [K] and

[D] are reduced natural frequencies based on the free-

stream speed of sound, as opposed to the conventional

form as presented in the nomenclature. However, in

the interest of clarity, presented results utilize the con-

ventional de�nition, based on free-stream velocity.

Equation (24) is a system of two, coupled, second-

order, ordinary di�erential equations. Coupling is ob-

tained through the terms containing S� and the de-

pendence of Cl and Cm on h and �. The system is

nonlinear through the nonlinearity of Cl and Cm. Lin-

earization is introduced by treating Cl and Cm as con-

stants, computed from the previous time-step of the


ow solution.

Simulations with a single-degree-of-freedom may

be performed by setting S� = 0 and either m = 1
and !h = 0 or I� = 1 and !� = 0 for pitching-only

or plunging-only motions, respectively.

Equation (24) is advanced in time by inverting

the system, yielding

fXg00 = [M]�1fFg
� [M]�1[K]fXg � [M]�1[D]fXg0 ; (25)

then rewriting the result as a system of two, coupled,

�rst-order equations

fXg0 = fY g
fY g0 = [M]�1fFg

� [M]�1[k]fXg � [M]�1[D]fY g ;
(26)

and, �nally, time integration is performed using a 1st-

order accurate explicit Euler scheme. Higher-order

methods were tested (eg. 4th-Order Runge-Kutta), but

the stability requirements of the Navier-Stokes code

are such that time-steps are small enough to achieve

su�cient accuracy with the 1st-order Euler explicit

time integration scheme.

The accuracy of the structural integration was

evaluated by removing the aerodynamic in
uence from

the problem, and releasing the airfoil with initial dis-

turbances in � and/or h. The kinetic and potential

energy of the system was then computed as the air-

foil oscillated in time. For the undamped system, the

energy should remain constant for all time.

The 1st-order Euler integration predicted a small

oscillation, such that the energy was periodic, with an

amplitude of roughly 0.3 percent of the total energy

when 1000 steps per cycle were used. The energy 
uc-

tuation diminished linearly with the step-size. The

Navier-Stokes solutions included in the paper typically

require between 1500 and 3500 steps per cycle, so this

energy 
uctuation was deemed acceptable.

RESULTS

For the present study, simulationswere performed

for the measurements obtained at experimental 
ow

conditions of free-stream Mach number of 0.768 at an

angle of attack of 1.28 degrees (Knipfer et al., 1998,

data for measurement no. 77). For these conditions,

limit-cycle oscillations in two-degrees-of-freedom were

found in the experiment. The experimental Reynolds

number (based on chord length) was 1:727�106 based

on a chord length of 0:3m for the NLR7301 airfoil

model.

In the experiment, the square shaped wind-tunnel

test-section had an area of 1m2, and the 0:3m chord

model was installed in the center. Due to this rel-

atively large chord length Knipfer et al. (1998) cor-

rected for steady wind-tunnel interference e�ects at

subsonic speeds. However, no corrections for steady

transonic and oscillatory interference e�ects were at-

tempted. Therefore, in this paper both the free-stream

Mach number (Mc) and the angle of attack (�c) were

corrected until a reasonable agreement with the mea-

sured time-averaged surface pressure distribution was

achieved.

All steady and unsteady viscous computations

were carried out on a C-type 221 � 91 point grid

which was generated from the original NLR7301 air-

foil surface data taken from the University of Illinois,

Champagne-Urbana, Department of Aeronautical and

Astronautical Engineering, Airfoil Coordinates Database

(www.uiuc.edu/ph/www/m-selig/ads/coord database.html).
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Fig. 2. C-type grid for the NLR 7301 airfoil.

A preliminary grid-sensitivity investigation was

performed for steady state solutions by varying initial

wall spacing, grid density in both directions, and outer

boundary location. As a result, a grid with an initial

wall spacing of 2�10�5, which yields y+ < 1:0, with 40

grid points in the wake and with the far�eld boundary

extended by 20 chord lengths from the surface was

chosen. The grid is shown in Fig. 2.

STEADY STATE COMPUTATIONS

At the beginning of the study, Euler computa-

tions were performed on an C-type grid with 201 �
41 points. However, even with a corrected free-stream

Mach number and a corrected angle of attack the agree-

ment between the computed and the measured results

was poor. Therefore, the free-stream Mach number

and angle of attack were corrected by performing vis-

cous computations. The computed inviscid pressure

distribution for the same 
ow conditions which yield

best agreement with the experiment with viscous com-

putations is shown in Fig. 3. This indicates that vis-

cous e�ects are important, as the strength and location

of the shock on the suction side are clearly missed by

the inviscid solver.

A closer agreement with the experimental data

was achieved by viscous computations with the Baldwin-

Lomax turbulence model assuming fully turbulent 
ow

(see Fig. 4). The best agreement was found for Mc =

0:753 and �c = �0:08 degrees. The fully turbulent

result could be improved by taking transition into ac-

count. Because no data of the transition onset location

where available from the experiment, the transition-

onset location was computed using the Michel crite-

rion.

0 0.2 0.4 0.6 0.8 1
x/c

−1

−0.5

0

0.5

1

1.5

−c
p

Exp. suction side
Exp. pressure side
Euler

Fig. 3. Pressure dist.; Mc = 0:753, �c = �0:08�.

Michel's criterion predicted the transition onset

at almost 60% chord on the suction side, leading to a

pressure distribution on the suction side similar to the

pressure distribution computed by the Euler code.

Michel's criterion predicted the onset location at

19% chord on the pressure side which improved the

pressure distribution on the pressure side slightly. It

was found that moving the transition onset location

further downstream could improve the steady-state re-

sult even more. Computations without transition and

with forced transition on the suction side at 3% and

on the pressure side at 44% chord length are shown in

Fig. 4.

0 0.2 0.4 0.6 0.8 1
x/c

−1

−0.5

0

0.5

1

1.5

−c
p

Exp. suction side
Exp. pressure side
BL fully turbulent
BL with transition

Fig. 4. Pressure dist.; Mc = 0:753, �c = �0:08�.

Steady-state computations could be greatly ac-

celerated by using a local-time-stepping scheme, with

no measurable di�erence, in terms of accuracy, to the

results of the time-accurate time-stepping scheme. Typ-
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ically 3000 time steps were required to converge at a

Courant number of 30.

The BB and SA turbulence models provided

marginally better agreement with experiment results

than the BL model. The computed pressure distri-

butions for the three models are compared with the

experimental data in Fig. 5. The BB and SA models

provide nearly identical pressure distributions for the

steady solution. Compared with the BL solution for

fully turbulent 
ow, the pressure distributions com-

puted by the BB and SA models on the suction side

are slightly worse in the range between 4% and 20%

chord length, but the agreement in front of the shock is

better. On the pressure side, the pressure distribution

is in much better agreement with the experiment be-

tween the leading edge and 45% chord length, leading

to a stronger shock than predicted by the BL model.

From 70% chord length to the trailing edge the BL

result is closer to the measurements.

0 0.2 0.4 0.6 0.8 1
x/c

−1

−0.5

0

0.5

1

1.5

−c
p

Exp. suction side
Exp. pressure side
SA fully turbulent
BB fully turbulent
BL fully turbulent

Fig. 5. Pressure dist.; Mc = 0:753, �c = �0:08�.

Taking transition into account improved the

steady-state results slightly, as shown in Fig. 6. Again

the BB and the SA turbulence models yield almost the

same result. Similar to the experience with the BL

model, the use of Michel's criterion on the suction side

led to an unrealistic transition onset location. There-

fore, transition onset on the suction side was enforced

at 3% chord length. On the pressure side, Michel's

criterion predicted a reasonable onset location at 44%

chord length which improved the steady-state result

near the trailing edge.

In Figs. 7 and 8 the boundary-layer pro�les of

the suction and the pressure side are compared for

computations which included transition. All computa-

tions predicted no laminar separation bubbles. Sepa-

ration was found on the suction side close to the trail-

ing edge for all turbulence models. The location of

separation onset was computed at 83% chord length

with the BL and the BB model, and at 90% chord

length with the SA model. A small separation bubble

in th shock region due to shock/boundary-layer inter-

action was found only for the computation with the

BL model.
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−0.5
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1
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Exp. suction side
Exp. pressure side
SA/BB with transition
SA/BB fully turbulent

Fig. 6. Pressure dist.; Mc = 0:753, �c = �0:08�.
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Fig. 7. Boundary-layer pro�les on the suction side.
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All computations with the BB and SA turbu-

lence model had to be performed time-accurately. A

Courant number of 1000 was used and full convergence

was achieved after 6000 time steps.

FLUTTER COMPUTATIONS

Unsteady computations were then performed us-

ing the previously presented steady-state results as

starting solutions. For the experimental test case no.

77 (Knipfer et al, 1998) with a free-stream Mach num-

ber of M = 0:768 (close to the transonic dip), limit-

cycle oscillations in pitch and plunge were found. The

experiment was conducted at a total pressure of 0.45

bar and a dynamic pressure of 0.126 bar. A time-

averaged angle of attack of �� = 1.28 degrees was mea-

sured for an angle of attack at wind-o� condition of

�0 = 1.91 degrees which is equivalent to the spring-

neutral angle of attack, �0, in the numerical simula-

tion.

The same free-stream Mach number and the an-

gle of attack corrections applied for the steady-state

computations (M = 0:753, � = �0:08 degrees , were

used in unsteady computations. The spring-neutral

angle of attack, �0c, was changed until the calculated

time-averaged angle of attack was close to the cor-

rected angle of attack of the steady-state computations

(� = �0:08 degrees).
The initial energy needed to disturb the airfoil

from its rest or steady-state position was derived from

the static-imbalance of the aerodynamic moment and

the moment of the spring. The nondimensional struc-

tural parameters of the experiment used for the un-

steady computations are summarized in Table 1.

Table 1: Structural parameters

xp = 0.2500 k� = 0.3280

x� = 0.0485 kh = 0.2510

m = 992.00 �� = 0.0041

I� = 35.600 �h = 0.0073

The �rst series of 
utter computations were per-

formed assuming fully turbulent 
ow. The starting

solutions for each turbulence model were the same as

given in Fig. 5. It turned out that for all turbulence

models the NLR 7301 airfoil began to 
utter in two-

degree-of-freedom. Limit cycle oscillations were pre-

dicted for all turbulence models. As an example Fig. 9

shows the time history of the pitching amplitude which

was obtained from a fully turbulent computation with

the SA turbulence model.

All computations predicted 
utter frequencies ap-

proximately 1.5% higher and inter-modal phase angles

approximately 7% lower than the experiment. The

phase angle was estimated from the phase of the fun-

damental frequencies of pitch and plunge predicted by

DFT-analysis of the last 10 cycles. Despite this agree-

ment, for all turbulence models, the computed pitching

and plunging amplitude of the limit cycle were o� by

an order of magnitude or more. Computations with

and without structural damping showed that damping

a�ects neither the 
utter frequency nor the phase an-

gle but decreased the pitch amplitude by 9% and the

plunge amplitude by 7%.
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τ

−4

−2

0
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4

α 
(i

n
 d

eg
re

es
)

Fig. 9. SA fully turbulent.

The in
uence of transition on the 
utter behav-

ior was studied in a second series of computations.

For this series the Spalart-Allmaras model was used

because it allowed the biggest time-steps. Unsteady

runs were performed starting from the solution given

in Fig. 6. Because of lack of measured data, transition

on the suction side was forced at 3% chord length and

on the pressure side Michel's criterion was applied. As

a result the transition location was recalculated dur-

ing 
utter. Again limit cycle 
utter in two-degree-of-

freedom was predicted. In Fig. 10, the time history

of the pitching amplitude shows that the limit-cycle

amplitude was higher and didn't stay as constant as

the fully turbulent computations.

An inter-modal phase angle of approximately 170

degrees was predicted (see Fig. 11). In Figs. 12 and

13 the pitching moment and lift coe�cient time his-

tory are shown. The dots in Figs. 11-13 indicate the

points through an oscillation cycle that correspond to

the Mach-contour plots in Figs. 14a-l. Some of the

dots are labeled for easier comparison. In Figs. 14a-l,

the dotted or broken line indicates the location of the

sonic line.

While the time history of the lift coe�cient is al-
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most smooth and harmonic, the time variation of the

pitching-moment coe�cient clearly shows the nonlin-

ear response of the 
ow �eld to the limit cycle 
utter

motion. Looking at the Mach-contour plots, one can

see that the plateau in the moment coe�cient time

history between (a) and (d) occurs when the airfoil is

pitching up and plunging down, which corresponds to

the portion of the cycle where the e�ective angle of

attack is the highest. During this period the shock on

the suction side becomes stronger and moves upstream

causing a shock induced separation.
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Fig. 10. SA with transition.

Once the turning point of the pitch motion is

reached the plateau ends and a smooth moment co-

e�cient variation between (d) and (g) is predicted.

The highest pitch-moment coe�cient is found between

(g) and (h). After the highest moment coe�cient is

reached, a steep decrease of the moment coe�cient is

predicted between (h) and (j) during which the air-

foil is pitching down and plunging up, corresponding

to a low e�ective angle of attack. Once the turning

point for the pitch and plunge motion (j) is reached,

the curve shows a smooth development between (j)

and (l). Looking at one cycle, the dominating nonlin-

ear 
ow e�ects occur between (a) and (d) and (h) and

(j). During these time periods the airfoil plunging and

pitching speed is decelerating, and the magnitude of

the e�ective angle of attack is the highest.

Although inclusion of transition improved the

prediction of the phase di�erence between pitch and

plunge, it did not a�ect the over-prediction of the am-

plitudes. On the contrary, higher amplitudes were pre-

dicted. All the unsteady computations showed that

even if the computed time-averaged angle of attack

di�ered from the steady-state angle of attack by 0.1

degree, it had no signi�cant in
uence on the overall


utter behavior.
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Fig. 11. SA; limit cycle in two-degree-of-freedom.
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Fig. 12. SA computed moment coe�cient.
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Fig. 14a. � = �0:05� up, h = �0:005 down.

Fig. 14b. � = 1:95� up, h = �0:021 down.

Fig. 14c. � = 3:40� up, h = �0:030 down.

Fig. 14d. � = 3:90� up, h = �0:032 up.

Fig. 14e. � = 3:30� down, h = �0:024 up.

Fig. 14f. � = 1:75� down, h = �0:009 up.
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Fig. 14g. � = �0:33� down, h = 0:009 up.

Fig. 14h. � = �2:36� down, h = 0:026 up.

Fig. 14i. � = �3:78� down, h = 0:035 up.

Fig. 14j. � = �4:25� down, h = 0:036 down.

Fig. 14k. � = �3:64� up, h = 0:028 down.

Fig. 14l. � = �2:10� up, h = 0:0128 down.
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The results of the transitional 
utter computa-

tion are given in detail in the following tables. The

free-stream Mach number, angle of attack, and spring-

neutral angle of attack are given in Table 2. For com-

parison, the uncorrected values of the experiment are

given in the �rst row of the table. The corrected val-

ues, taking into account wind-tunnel e�ects, are given

in the second row. Flutter frequency, phase, ampli-

tudes �̂ and ĥ, and mean angle of attack �� are pre-

sented in Tables 3a and 3b, respectively.

Table 2: Initial values of the computations

method Mc �c [
o] �0c [

o]

Exp.a 0.768 1.28 1.91

SAb 0.753 -0.08 0.60

a = without wind tunnel corrections.

b = with transition.

Table 3a: Flutter result

method �� [o] �̂ [o] ĥ [mm]

Exp.a 1.28 0.18 0.65

SAb -0.160 4.09 10.5

Table 3b: Flutter result

method f [Hz] � [o]

Exp.a 32.85 176.7

SAb 33.42 169.8

CONCLUSIONS

Good agreement with the measured time-averaged

pressure distribution could be obtained after correct-

ing the free-stream Mach number and the angle of at-

tack for wind-tunnel interference e�ects. The Baldwin-

Barth and the Spalart-Allmaras turbulence models in

combinationwith the Gostelow transition model yielded

the best agreement.

Using the Spalart-Allmaras turbulence model, the

transonic, two-degree-of-freedom bending/torsion 
ut-

ter analysis of the NLR 7301 supercritical airfoil sec-

tion predicted limit-cycle 
utter. The phase angle

between pitch and plunge and the 
utter frequency

match the experimental values quite well, but the com-

puted 
utter amplitude exceeded the measured ampli-

tude by an order of magnitude. Incorporation of the

transition model did not signi�cantly a�ect this re-

sult. This discrepancy between the measured and the

computed amplitudes could be due to the following

reasons:

a. Omission of unsteady wind-tunnel interference

e�ects.

b. Incorrectly chosen corrected free-streamMach num-

ber.

c. Incorrectly chosen corrected spring-neutral angle

of attack.

d. Insu�cient resolution of the shock location.

e. Insu�cient resolution of transition onset.

f. Insu�cient knowledge about transition onset.

These aspects need to be further investigated.
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