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Abstract

A new method for the design of waverider con-

�gurations with generalized shock geometries is pre-

sented. An arbitrary three-dimensional shock shape

is speci�ed as input, and a cross-stream Euler march-

ing procedure is used to de�ne the post-shock 
ow-

�eld. Unlike most previous studies, this approach al-

lows for the use of nonaxisymmetric shock topologies

with nonconstant shock strengths. The problem's fun-

damental ill-posedness is suppressed by reformulating

the problem in the proper curvilinear coordinate sys-

tem. Details of the new design approach are given,

and the method is validated using comparisons with

exact theory and direct numerical simulations.

Nomenclature

a=b = ratio of vert. and horiz. axis of ellipse

L=D = lift over drag

M1 = freestream Mach number

OP = osculating plane

p = pressure

T = temperature

u; v; w = vel. components in Cartesian coords.

U; V;W = vel. components in generalized coords.

x; y; z = Cartesian coordinates

� = local shock angle

� = displacement thickness


 = ratio of speci�c heats

� = density

�w = two-dimensional wedge angle

� = streamwise computational coordinate

� = circumferential computational coord.

� = radial computational coordinate

Introduction

When one examines humankind's past a clear

trend has prevailed throughout history, and that is the

everpresent desire to travel greater distances in shorter

times. Indeed, this desire has been a primary moti-

vation for technological growth and expansion of the

scienti�c community. For some the interest lies in ful-

�lling the transportation needs for a so-called `Global

Community' as suggested by Kuchemann1, where any

two places on the globe are at most a few hours of

travel time apart. For others the interest lies in pro-

viding more e�cient access to Low Earth Orbit (LEO)

with fully reusable aircraft that take o� and land on

conventional runways. A number of projects have been

initiated over the past decade or so to research these

and related topics. These projects include the de-

sign of such vehicles as the National AeroSpace Plane

(NASP), the German S�anger, High-Speed Civil Trans-

ports (HSCTs), and a host of other aircraft. Recent

advances in the �elds of materials and propulsion have

made vehicles such as these realistically feasible for the

early 21st century.

In the quest for high-speed performance an old

idea, the waverider, has resurfaced as a viable class of

geometries. Waveriders, classically de�ned in inviscid


ow, have sharp leading edges and maintain attached

shock waves at the design 
ight conditions. The shock

wave (or shock waves) is generally contained beneath

the body in such a way that the aircraft appears to be

riding on the wave, hence the name waverider.

Waveriders are interesting vehicles for several rea-

sons. From a performance standpoint they have both

theoretically and experimentally provided high values

of L=D at high Mach numbers at their on-design 
ight

conditions. Additionally, recent experimental work by

Bauer et al.2 has shown them to be competitive at o�-

design conditions as well. From a design standpoint

waveriders o�er the rather unique feature of isolating

the 
ows over the upper and lower surfaces, e�ectively

dividing their design into two independent problems.

The lower surface is designed to generate a desired

shock wave and inlet 
ow conditions, and the upper

surface may be independently designed to ful�ll both

performance and internal volume requirements.

Waveriders were �rst conceptualized in 1959 by

Nonweiler3 as reentry vehicles for manned space 
ight.

Nonweiler's classic `caret-wing' produced a planar shock

wave contained beneath a delta planformed aircraft as

illustrated in �g. 1. The caret-wing was `carved' from

the inviscid, two-dimensional, supersonic 
ow over an

in�nite wedge. By taking the known 
ow�eld and
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de�ning a leading edge on the shock surface (an inverted-

V shape in this case) the streamsurface passing through

the leading edge could be used to de�ne the waverider's

lower surface. The upper surface was then chosen as

parallel to the freestream 
ow, thus de�ning a body

with internal volume. The post-shock pressure on the

lower surface was higher then the freestream pressure

on the upper-surface providing the aircraft's lift.

A similar approach was used in 1963 by Jones4

to carve waverider topologies from the 
ow�elds over

axisymmetric cones at zero incidence. In the follow-

ing years many researchers (see Eggers5 for a sum-

mary) provided variations to this design approach with

the primary di�erence being the choice of the 
ow�eld

from which the waverider is carved. In most past stud-

ies geometrically simple shock shapes such as planes or

axisymmetric surfaces were chosen because exact or

relatively simple approximate solutions for the post-

shock 
ow�elds were known.

The design of waveriders is inherently an inverse

problem. In Nonweiler's design approach, the nature

of the 
ow�eld was known prior to the shape of the wa-

verider; thus the con�guration was inversely designed

to reproduce a desired shock and 
ow�eld. It is actu-

ally quite di�cult to design a vehicle that will perform

as a waverider at some desired cruise conditions using

direct methods. However, it is a relatively simple task,

in theory if not in practice, to choose a desired shock

wave and �nd the waverider that will generate it. In-

verse methods are often superior to direct methods

for use in optimization procedures as well. Past work

by Center et al.6 has shown that waveriders can be de-

signed and viscous analysis performed in a few seconds

on a workstation using inverse techniques, whereas a

direct Navier-Stokes simulation of the same con�gura-

tion may require more than 30 minutes of Cray YMP

CPU time.

The current study again employs an inverse de-

sign method with the same basic design approach pre-

viously outlined. However, where most past studies

have limited the choice of shock shapes to planar or

axisymmetric surfaces, the current e�ort allows for the

use of more general shock shapes than those of any pre-

vious studies. The method incorporates a cross-stream

Euler marching scheme that de�nes the 
ow�eld be-

hind the speci�ed shock surface from which the wa-

verider is carved. The general three-dimensional, su-

personic, cross-stream marching problem is ill-posed;

however, if correctly formulated the method can be

solved to yield accurate and physically meaningful so-

lutions.

Details of the marching scheme and peripheral

computations are given here, with comparisons to ex-

act theory and direct Euler simulations.

Design Approach

In the introduction a very brief summary of the

basic waverider design approach was given. In this

section a more elaborate description will be given with

details pertaining to the current study.

As was previously mentioned the upper and lower

surfaces may be designed independently, and the �rst

step in the design of the lower surface is the speci�-

cation of the desired shock geometry and leading edge

shape. The post-shock conditions which are the actual

initial conditions for the marching procedure are com-

puted next. The solution is then marched away from

the shock surface in `optimal' directions. Once the


ow�eld is de�ned, streamlines are integrated down-

stream from the speci�ed leading edge to de�ne the

streamsurface that becomes the waverider's lower sur-

face. The upper surface is arbitrarily de�ned by the

user, and 
ow parameters are computed there using an

approximate method of characteristics. Performance

of the vehicle is computed by integrating the surface

pressure over the surface. Details of the primary steps

are given in the following subsections.

Lower Surface Design

The lower (shock generating) surface is the most

di�cult surface to design, but it is really the central

issue of the problem, since it typically generates about

80% of a waverider's total lift. It is of particular in-

terest here, as it demonstrates the utility of a newly

developed cross-stream, Euler marching scheme.

Initial Conditions The �rst step in the design of

the lower surface is the de�nition of the shock sur-

face. Ideally the shock is parametrically de�ned, such

that the computational grid on the shock surface can

be optimally generated. As will become evident in a

later section, the lines of constant � value should be

aligned with the local osculating plane (OP), where

the OP at a point is tangent to the local streamline

and contains the principal normal to the streamline as

illustrated in �g. 2. The OP is the plane in which a

general three-dimensional 
ow most closely resembles

an axisymmetric 
ow. Creating a computational sur-

face mesh of this nature on the parametrically de�ned

shock requires the numerical integration of a single for-

mula obtained through vector analysis. The geometric

orientation of the shock wave and the computational

mesh are portrayed in �g. 3.
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Once the shock surface and the freestream condi-

tions M1 and 
 are speci�ed the post-shock 
ow con-

ditions can be de�ned. The Rankine-Hugoniot jump

relations are used to compute the post-shock scalar

quantities, and several simple geometric relations are

used to compute the post-shock velocity components,

u, v, and w.

Governing Equations The �ve equations governing

the 
ow�elds of this study are the conservation of

mass, the three conservation of momentum, and the

entropy equations for steady, inviscid, three-dimen-

sional 
ow, given in vector notation by

E~qx + F~qy +G~qz = 0 (1)

where

E =

2
6664

u � 0 0 0

0 �u 0 0 1

0 0 �u 0 1

0 0 0 �u 1

�up
 0 0 0 �u

3
7775 ;

F =

2
6664

v 0 � 0 0

0 �v 0 0 1

0 0 �v 0 1

0 0 0 �v 1

�vp
 0 0 0 �v

3
7775 ;

G =

2
6664

w 0 0 � 0

0 �w 0 0 1

0 0 �w 0 1

0 0 0 �w 1

�wp
 0 0 0 �w

3
7775 ;

and

~q =

2
6664

�
u

v
w
p

3
7775 :

The subscripts denote partial derivatives. The use of

the entropy equation in place of the energy equation

is valid for inviscid, adiabatic 
ows, and the substitu-

tion of p=�
 in place of the entropy is valid for calor-

ically perfect gases. Since the problem at hand is an

inviscid shock-�tting algorithm, these assumptions are

valid and the use of the entropy equation is acceptable,

in fact preferable, as it weakens the coupling between

the system of equations. Note that the entropy equa-

tion does not require the entropy to be constant ev-

erywhere; it merely states that the entropy of a given

particle is constant. Hence, the entropy is constant

along streamlines in a steady 
ow.

Equation 1 is nondimensionalized as follows

~� =
�

�1
; ~u =

u

a1
; ~v =

v

a1
; ~w =

w

a1
;

and ~p =
p

p1

: (2)

When these relations are substituted into eqn. 1 the

system remains unchanged in form, so it is not re-

peated here, and the tildes are dropped throughout

the remainder of the development.

The system of equations is transformed into a

generalized coordinate system where � = �(x; y; z),
� = �(x; y; z), and � = �(x; y; z). Expanding the par-

tial derivatives using the chain rule and simplifying

where possible, yields the system

Ê~q� + F̂~q� + Ĝ~q� = 0 (3)

where

Ê =

2
6664

U ��x ��y ��z 0

0 �U 0 0 �x
0 0 �U 0 �y
0 0 0 �U �z

�Up
 0 0 0 �U

3
7775 ;

F̂ =

2
6664

V ��x ��y ��z 0

0 �V 0 0 �x
0 0 �V 0 �y
0 0 0 �V �z

�V p
 0 0 0 �V

3
7775 ;

and

Ĝ =

2
6664

W ��x ��y ��z 0

0 �W 0 0 �x
0 0 �W 0 �y
0 0 0 �W �z

�Wp
 0 0 0 �W

3
7775 ;

where U , V , and W are the contravariant velocities

and �x, �y, �z , �x, �y, �z, �x, �y, and �z are the inverse
metrics.
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As will be shown in a later section, marching

within the OP minimizes the e�ects of the problem's

ill-posedness. In the OP the contravariant velocity V
is by de�nition exactly zero. Applying this to eqn. 3

yields

Ê~q� + F̂�~q� + Ĝ~q� = 0 (4)

where

F̂� =

2
6664

0 ��x ��y ��z 0

0 0 0 0 �x
0 0 0 0 �y
0 0 0 0 �z
0 0 0 0 0

3
7775 :

This is the system of equations that is used to

describe the 
ow�eld between the shock and the wa-

verider's lower surface.

Ill-posedness For supersonic 
ow problems march-

ing is usually performed in the streamwise or time-like

direction as illustrated in �g. 4a. In this problem,

however, availability of initial data mandates a cross-

stream marching direction as shown in �g. 4b.

It was previously stated that the general three-

dimensional, supersonic, cross-stream marching prob-

lem is ill-posed or, put more simply, the wrong bound-

ary conditions are given for the set of governing equa-

tions. This can be seen graphically in �g. 5 where the

initial data clearly lies outside the Mach conoids de�n-

ing the domains of in
uence and dependence. This can

be illustrated mathematically by looking at the linear

model equation

�xx � �yy � �zz = 0: (5)

This is a hyperbolic equation (as is eqn. 4 for super-

sonic 
ow) with x as the time-like direction. A solution

to eqn. 5 can be constructed from an in�nite series of

modal components of the form

� = exp[i(k1x+ k2y + k3z)]; (6)

where i =
p�1 and k1, k2, and k3 are the wavenum-

bers in the x, y, and z directions, respectively. Cross-
streammarching impliesmarching in a direction di�er-

ent from the time-like direction. In the model problem

the z-direction is used.

By di�erentiating eqn. 6 and substituting the

results into eqn. 5, the relation

k3 = �
q
k2
1
� k2

2
(7)

can be formed for k3 as a function of k1 and k2. Equa-
tion 7 states that for jk2j > jk1j the wavenumber k3
becomes imaginary causing � to grow exponentially in

the marching direction.

On the other hand, it can easily be shown that a

similar problem formulated in two dimensions is well-

posed for either streamwise or cross-stream march-

ing directions. Consequently, if a system of governing

equations can be reduced to a two-dimensional system

by the proper choice of marching directions then the

ill-posedness can sometimes be removed.

A more appropriate model for the current sys-

tem of equations is the two-dimensional, compressible

streamfunction

A xx + 2B xz +C zz = D (8)

where

A = 1� u2

a2
; B = �uw

a2
; C = 1� w2

a2
;

and D = �2T (M2 � 1)F 0( ) : (9)

Here F ( ) is the entropy expressed in terms of the

streamfunction. For irrotational 
ow F 0( ) = 0, and

eqn. 8 is homogeneous. A series solution of the form

 = exp[i(k1x+ k2y)] (10)

can be constructed for the homogeneous equation, and

the wavenumber in the z-direction is given by

k2 =
k1

1� w2

a2

�
uw

a2
�
p
M2 � 1

�
: (11)

Note that k2 is real-valued for all M > 1, resulting in

bounded solutions for supersonic 
ow.

If the 
ow is rotational (i.e., behind a curved

shock), then F 0( ) is not zero, and eqn. 8 is not ho-

mogeneous. There is no longer a simple solution con-

struction, and it is di�cult to establish whether or not

the solution will be bounded. However, if the radius

of curvature of the shock is large with respect to the

marching distance, then F 0( ) will be small, and the

right hand side of eqn. 8 can be neglected.

By marching in the OP the contravariant velocity

V is eliminated. Unfortunately, the system is not quite

two-dimensional, as several derivative terms still exist

in the matrix F̂�. However, if these remaining terms

are kept small in relation to the associated terms in the

matrix Ĝ (i.e., cross-stream gradients are small over

distances comparable to the marching distance), then

bounded solutions may be expected.
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Grid Generation Marching is to be performed in

the local OP; therefore, it should be obvious that the

marching directions, and hence the computational grid,

are solution-dependent. At the shock and at each

marched grid layer the orientation of the local OPs

are determined, indicating the directions in which the

marching is to be performed. The marching distance

must be limited within the characteristic boundaries

of the given initial data. Figure 6 shows a typical

symmetry-plane grid for a conical shock wave. Note

that a grid point is lost at the upstream and down-

stream boundaries at each marched layer. This pro-

vides a means for implicitly de�ning boundary con-

ditions, since initial data at these boundaries is not

known explicitly.

Marching On the shock wave and at each marched

grid layer the gradients of ~q with respect to � and

� are computed using central �nite di�erences. The

gradients in the � direction are computed by rewriting

eqn. 4 in the form;

~q� = �Ĝ�1[Ê~q� + F̂�~q�]: (12)

Due to the sparseness of matrix Ĝ its inversion is a

relatively simple task. The solution is marched us-

ing a centrally di�erenced scheme, except at the shock

surface where one-sided di�erences must be used.

Surface De�nition The waverider's lower surface is

a streamsurface in the inviscid 
ow, and it is de�ned

by integrating streamlines downstream from the pre-

scribed leading edge. The integration is performed

two-dimensionally in the computational domain where

the contravariant velocity, V , is identically zero. Fig-

ures 7a and 7b portray the computed streamlines and

the waverider's surface, respectively.

Upper Surface Design

The design of the upper surface of the waverider

is a direct design problem, and it o�ers more 
exibility

to the designer. The surface may be tailored to include

features for internal volume placement and expansion

surfaces for enhanced performance.

The upper surface typically provides less than

20% of the vehicle's lift even when optimally expanded.

Due to this and because the design of the lower surface

was the primary goal of the project, a much simpler

(and correspondingly less accurate) solution method is

applied to the upper surface. An approximate varia-

tion of the method of characteristics developed by Cen-

ter et al.6 is applied along pseudo-streamlines de�ning

the upper surface.

Performance Analysis

The vehicle's performance is computed by inte-

grating the surface pressure over the waverider's sur-

face. Integration of the pressure forces is performed by

computing the area vector at each grid cell and mul-

tiplying the Cartesian area components by the cell-

centered pressure coe�cient.

Validation

As with any new computational method, an ex-

tensive validation process is needed to test the accu-

racy and the limits of the new method. This is done

through comparisons with exact theory and other nu-

merically obtained results.

Exact Solutions

Several exact solutions exist with which the invis-

cid design of the lower surface may be validated. The

simplest case is the two-dimensional 
ow over a wedge

with a planar shock wave. This is not a very interest-

ing case, however, as all of the post-shock gradients are

identically zero. The wedge 
ow problem is useful for

testing the implementation of the Rankine-Hugoniot

equations, grid generation, and other basic tools, but

it provides no measure of the marching scheme's suc-

cess.

A more interesting class of geometries for which

exact solutions exist is the axisymmetric 
ow over a

cone. The Taylor-Maccoll equation, a single, 2nd-

order, ordinary di�erential equation, may be integrated

numerically from the shock surface in toward the cone's

surface, providing a solution for the 
ow�eld between

the shock and the cone that is exact within the bounds

of the numerical integration. Details of the Taylor-

Maccoll solution procedure can be found in Anderson7.

For the results presented in this paper, 4th-order Runge-

Kutta integration is used for the Taylor-Maccoll equa-

tion. E�ects of grid resolution and limitations in the

acceptable range of 
ow�elds are discussed below.

For axisymmetric 
ow�elds the accuracy and sta-

bility of the 
ow�eld computation is independent of

the number of points in the circumferential (�) or span-
wise direction. However, if an accurate representation

of the waverider's lower surface is desired, a reasonable

number of points are needed in the spanwise direction,

as each point corresponds to a streamline used in the

surface de�nition as shown in �g. 7a.

The number of points in the streamwise and march-

ing directions are necessarily coupled as can be seen in
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�g. 6. If more points are desired in the marching di-

rection, then the number of points in the streamwise

direction must be increased accordingly. The accu-

racy of the solution increases as the number of points

in the marching direction is increased as shown in �g.

8, where the pressures predicted by the new marching

code and by the Taylor-Maccoll equation are compared

in the 
ow�eld between the shock and the waverider's

surface.

The algorithm is accurate and stable over a wide

range of 
ow parameters. The range of applicability is

bounded by an in�nitely weak shock on one end, and

a strong shock on the other end, where the post shock


ow becomes subsonic. Approaching the strong shock

limit does not present any real di�culty as long as

the 
ow remains supersonic. However, when the weak

shock limit is approached, solutions become di�cult

to obtain for two reasons. First, initial data must be

given on a shock surface extending many body lengths

downstream from the desired 
ow region in order to

provide the needed downstream boundary conditions.

As the shock strength approaches zero, the required

length of the computational domain approaches in-

�nity. Second, an unavoidable numerical error arises

when the �-grid lines become parallel to the local ve-

locity, as is often the case with weak shocks. The error

is due to the contravariant velocity W showing up in

the denominator of most of the right-hand-side terms

of eqn. 12. If the velocity is parallel to the �-grid lines,
then W is identically zero, and ~q� becomes indetermi-

nate. This can be rationalized from a characteristics

point of view. Recall that for rotational 
ow, stream-

lines form a third family of characteristics, and that if

initial data is only given on a characteristic the solu-

tion may not be advanced o� the characteristic.

Direct Simulations

Several of the present authors have assembled

and validated a host of computational tools necessary

for the direct simulation of inviscid 
ows about con�g-

urations with sharp leading edges such as waveriders8.

These tools provide a means for validating the new

design code results for which there are no exact solu-

tions. Following are four test cases investigating di�er-

ent shock topologies with nonconstant shock strengths:

case 1; an elliptic cone with a=b = 0:75, case 2; an el-

liptic cone with a=b = 1:25, case 3; a right circular

cone at an angle of attack, and case 4; an axisymmet-

ric surface with curvature in the streamwise direction.

In all cases the computational grids for the di-

rect simulations had dimensions 41�61�31 and were

adapted three times (based on density gradients) dur-

ing the convergence to more accurately capture the

shock location. Solutions were allowed to converge

until the l2 norm dropped at least �ve orders, and

the change in CL, CD, and L=D over 100 iterations

was less than 10�5. The resolution in the spanwise di-

rection for the marching code, SCIEMAP (Supersonic

Compressible Inverse Euler Marching

Program), was 41 points, and the freestream Mach

number in all cases was 4, as past experience has shown

F3D to work better there than at higher Mach num-

bers.

Case 1 The shock surface in this case is a piece of

an elliptic cone with a=b = 0:75 and a symmetry-plane

shock angle of � 26:5�. The computational grid for

SCIEMAP has 12 points in the marching direction.

A freestream upper surface is used, and the resulting

waverider is shown in �g. 9.

The values of CL, CD, and L=D predicted by

SCIEMAP and F3D are given in tables 1 and 2, re-

spectively. Note that the values of L=D di�er by only

0:13%. Figure 10 plots the surface pressure predicted

by both codes at 90% chord, showing excellent agree-

ment.

Case 2 This shock surface is also a piece of an el-

liptic cone, and di�ers from case 1 only in the ratio

of a=b = 1:25. The lower value of a=b used in case 1

results in a 
ow�eld with a small pressure variation

between the shock and surface (i.e., closer to planar


ow), and the higher value of a=b used here results in

a greater variation in pressure between the shock and

surface, and is therefore a more di�cult test. Fifteen

points are used in the marching direction, and this case

also includes a freestream upper surface, as pictured

in �g. 11.

The ratio of L=D was computed within 0:12%
of the value predicted by F3D. Surface pressures at

90% chord are compared in �g. 12 showing reasonable

agreement between the two codes. The lower surface

pressure distributions illustrate the accuracy of SCI-

EMAP.

Case 3 The shock surface in this case is a portion of

a right circular cone with a cone angle of � 22� and

is at an angle of attack of � 6�. The marching grid

has 16 points in the marching direction. The vehicle,

shown in �g. 13, has an expanding upper surface that

provides roughly 6% of the total lift.

The values of L=D in this case match to within

0:05%. Surface pressures at 90% chord are compared

in �g. 14 and, as can be seen, agreement on the lower

surface is quite good, and the agreement on the up-

6



per surface is within the expected tolerances for the

method.

Case 4 The shock surface in this case is a portion of

an axisymmetric surface where the arc of revolution is

a piece of a parabola. The computational grid for SCI-

EMAP has 17 points in the marching direction. This

con�guration, shown in �g. 15, also includes an ex-

panding upper surface with a more extreme expansion

than case 3, providing roughly 17% of the total lift.

Predictions of L=D in this case match well with a

0:17% variation. Figure 16 compares surface pressures

at 90% chord and, again, agreement on the lower sur-

face is quite good, and on the upper surface the agree-

ment is reasonable. The streamwise curvature of the

shock in this case is quite small; however, the pressure

distribution in the computed 
ow�eld is remarkably

di�erent from that of a conical 
ow�eld as can be seen

in �gs. 17a and 17b, respectively.

Table 1: Lift and drag results of SCIEMAP.

Case CL CD L=D

1 0.2469 0.06609 3.7348

2 0.2403 0.06782 3.5438

3 0.2646 0.06966 3.7932

4 0.2697 0.06718 4.0149

Table 2: Lift and drag results of F3D.

Case CL CD L=D

1 0.2444 0.06535 3.7396

2 0.2366 0.06669 3.5479

3 0.2605 0.06862 3.7963

4 0.2650 0.06590 4.0218

Conclusions

A new method for the design of waverider con-

�gurations with generalized shock geometries was pre-

sented. The new method provides increased 
exibility

over previous studies in the choice of shock shapes.

The fundamental ill-posedness of the problem, which

usually precludes the existence of bounded solutions,

was suppressed by reformulating the problem in a curvi-

linear coordinate system, where the equations closely

resemble a stable two-dimensional system by marching

within the local osculating-plane.

Comparisons of results from the SCIEMAP al-

gorithm with exact solutions for axisymmetric conical


ow illustrate its accuracy over a broad range of pa-

rameters. Comparisons with direct Euler simulations

using the F3D 
ow solver demonstrate its accuracy in

computing complex 
ow�elds, with more general shock

geometries than any previous studies, and its applica-

tion to waverider design has resulted in a new class of

waverider topologies.
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Figure 1: Nonweiler's `caret-wing' waverider.

Figure 4: Streamwise versus cross-stream marching.

Figure 2: Osculating Plane (OP).

Figure 5: Characteristic conoids in three-dimensions.

Figure 3: Geometric layout of the shock surface. Figure 6: Symmetry-plane marching grid.
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Figure 7a: Streamlines through the leading edge, and

b). the waverider's spline-�t lower surface.

Figure 9: Case 1: surface topology (- - - - shock pro-

�le).

Figure 8: Pressure distribution between the shock and

surface for axisymmetric conical 
ow.

Figure 10: Case1: surface pressure at 90% chord.
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Figure 11: Case 2: surface topology (- - - - shock pro-

�le).

Figure 13: Case 3: surface topology (- - - - shock pro-

�le).

Figure 12: Case2: surface pressure at 90% chord. Figure 14: Case3: surface pressure at 90% chord.10



Figure 15: Case 4: surface topology (- - - - shock pro-

�le).

Figure 17a: Symmetry-plane pressure contours for a).

nonconical 
ow (case 4) and b). conical 
ow (case 2).

Figure 16: Case4: surface pressure at 90% chord.
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